首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to investigate the influence of aircraft turnaround performance at airports on the schedule punctuality of aircraft rotations in a network of airports. A mathematical model is applied, composed of two sub-models, namely the aircraft turnaround model (turnaround simulations) and the enroute model (enroute flight time simulations). A Markovian type model is featured in the aircraft turnaround model to simulate the operation of aircraft turnarounds at an airport by considering operational uncertainties and schedule punctuality variance. In addition, stochastic Monte Carlo simulations are employed to carry out stochastic sampling and simulations in both the aircraft turnaround model and the enroute model. Results of simulations show the robustness of the aircraft rotation model in capturing uncertainties from aircraft rotations. The propagation of knock-on delays in aircraft rotations is found to be significant when the short-connection-time policy is used by an airline at its hub airport. It is also found that the proper inclusion of schedule buffer time in the aircraft rotation schedule helps control the propagation of knock-on delays and, therefore, stabilize the punctuality performance of aircraft rotations.  相似文献   

2.
Abstract

A real-time operation monitoring system – Aircraft Turnaround Monitoring System – is developed based on a system framework to monitor aircraft turnaround operations at an airport. Mobile computing devices (PDAs) and wireless network technology General Packet Radio Service (GPRS) are used to implement the real-time monitoring system for an airline. System implementation and test results indicate that real-time operation monitoring can potentially reduce delays occurring from airline operations. Proactive measures can be taken immediately by ground handling staff to reduce delays, once the risk of delays and potential delay propagation is identified. The availability of detailed operating data can help airlines identify the root delay causes from complex connections among aircraft, flight/cabin crew and passengers. In addition, these operating data also shed some light on the future development of aircraft routing algorithms in order to consider explicitly stochastic disruptions and delay propagation in airline schedule planning.  相似文献   

3.
This paper presents a new class of models for predicting air traffic delays. The proposed models consider both temporal and spatial (that is, network) delay states as explanatory variables, and use Random Forest algorithms to predict departure delays 2–24 h in the future. In addition to local delay variables that describe the arrival or departure delay states of the most influential airports and links (origin–destination pairs) in the network, new network delay variables that characterize the global delay state of the entire National Airspace System at the time of prediction are proposed. The paper analyzes the performance of the proposed prediction models in both classifying delays as above or below a certain threshold, as well as predicting delay values. The models are trained and validated on operational data from 2007 and 2008, and are evaluated using the 100 most-delayed links in the system. The results show that for a 2-h forecast horizon, the average test error over these 100 links is 19% when classifying delays as above or below 60 min. Similarly, the average over these 100 links of the median test error is found to be 21 min when predicting departure delays for a 2-h forecast horizon. The effects of changes in the classification threshold and forecast horizon on prediction performance are studied.  相似文献   

4.
Abstract

Airport slot misuse disturbs the efficient and continuous operation of capacity-constrained airports, leading to congestion and delay problems. Deviations from the coordinated schedule in regional airport systems that feature seasonal demand and delays in certain peak periods are studied in this article. The Greek airport system is considered as a case study. Deviations are quantified by computing the difference between scheduled and actual aircraft arrival times as well as the hourly slot capacity utilization ratio. Two collective indicators for airport benchmarking are proposed. An in-depth analysis of slot allocation deviations and the delays they cause is carried out for a representative sample of airports that are classified according to the proposed indicators. A brief discussion on potential measures to mitigate slot misuse is also presented.  相似文献   

5.
The insufficiency of infrastructure capacity in an air transport system is usually blamed for poor punctuality performance when implementing flight schedules. However, investigations have revealed that ground operations of airlines have become the second major cause of flight delay at airports. A stochastic approach is used in this paper to model the operation of aircraft turnaround and the departure punctuality of a turnaround aircraft at an airport. The aircraft turnaround model is then used to investigate the punctuality problem of turnaround aircraft. Model results reveal that the departure punctuality of a turnaround aircraft is influenced by the length of scheduled turnaround time, the arrival punctuality of inbound aircraft as well as the operational efficiency of aircraft ground services. The aircraft turnaround model proposed is then employed to evaluate the endogenous schedule punctuality of two turnaround aircraft. Model results, when compared with observation data, show that the operational efficiency of aircraft ground services varies among turnarounds. Hence, it is recommended that the improvement of departure punctuality of turnaround aircraft may be achieved from two approaches: airline scheduling control and the management of operational efficiency of aircraft ground services.  相似文献   

6.
The airline schedule planning problem is defined as the sequence of decisions that need to be made to obtain a fully operational flight schedule. Historically, the airline scheduling problem has been sequentially solved. However, there have already been many attempts in order to obtain airline schedules in an integrated way. But due to tractability issues it is nowadays impossible to determine a fully operative and optimal schedule with an integrated model which accounts for all the key airline related aspects such as competitive effects, stochastic demand figures and uncertain operating conditions. Airlines usually develop base schedules, which are obtained much time in advance to the day of operations and not accounting for all the related uncertainty. This paper proposes a mathematical model in order to update base schedules in terms of timetable and fleet assignments while considering stochastic demand figures and uncertain operating conditions, and where robust itineraries are introduced in order to ameliorate miss-connected passengers. The proposed model leads to a large-scale problem which is difficult to be solved. Therefore, a novel improved and accelerated Benders decomposition approach is proposed. The analytical work is supported with case studies involving the Spanish legacy airline, IBERIA. The presented approach shows that the number of miss-connected passengers may be reduced when robust planning is applied.  相似文献   

7.
The existing slot allocation mechanism, based on the International Air Transport Association (IATA) system and its complementary version of the European Union (EU) regulation, produces rather poor capacity allocation outcomes for congested EU airports since it fails to properly match slots requested with slots allocated to airlines. Inefficiencies during the initial allocation are mainly due to the problem complexity in conjunction to limited decision support available to slot coordinators. On the other hand, substantial inefficiencies give rise to severe slot misuse and unreasonably low utilisation of airport resources running already into scarcity. The objective of this paper is to develop an optimisation-based model implementing the existing EU/IATA rules, operational constraints, and coordination procedures with the ultimate objective to better accommodate airlines’ preferences at coordinated airports through the minimisation of the difference between the requested and the allocated slot times to airlines. The results of the model are assessed and compared vis-à-vis the allocation outcome produced according to current slot coordination practice in three regional Greek airports. The proposed model produces very promising results and demonstrates that there is large room for improvement of the efficiency of the current allocation outcome in a range between 14% and 95%. The discussion of the model results is complemented by a sensitivity analysis highlighting the importance of declared capacity and the magnitude of its influence on slot allocation efficiency.  相似文献   

8.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

9.
This paper develops, evaluates and ultimately aids in the choosing of an optimal, single allocation, hub-and-spoke network for an airline working in a deregulated market. An integer linear program evaluates potential hub network combinations, whose profits are then determined using a non-linear mathematical program. International gateway airports and regional hubs, profit, frequency and aircraft size are the decision variables. An adapted, conjugate-gradient projection algorithm is developed and the models are subsequently applied to Western Europe.  相似文献   

10.
We develop two stage fixed-effects single-spill and double-spill models for congestion connection spills of London Heathrow and Frankfurt airports on 9 hub airports in Europe and the Gulf. Our panel data covers connection traffic from 1997 to 2013 for Heathrow and 1997 to 2011 for Frankfurt. The single-spill results support strongly that the connection spills from Heathrow’s capacity limitations do strengthen competing hub airports of major alliance groups and to a lesser degree one Gulf hub. The double-spill model for Heathrow and Frankfurt shows nearly asymmetric overall spill characteristics between the two airports. Our results underline the influence of airline network strategies on congestion spills as European airline networks are shaped by alliances and umbrella mergers. Thus, the airline network perspective in airport capacity expansion decisions needs to play a greater role, as indicated by our asymmetric results for overall spill effects between Heathrow and Frankfurt airports.  相似文献   

11.
Abstract

When disturbances make it impossible to realise the planned flight schedule, the dispatcher at the airline operational centre defines a new flight schedule based on airline policy, in order to reduce the negative effects of these perturbations. Depending on airline policy, when designing the new flight schedule, the dispatcher delays or cancels some flights and reassigns some flights to available aircraft. In this paper, a decision support system (DSS) for solving the airline schedule disturbances problem is developed aiming to assist decision makers in handling disturbances in real-time. The system is based on a heuristic algorithm, which generates a list of different feasible schedules ordered according to the value of an objective function. The dispatcher can thus select and implement one of them. In this paper, the possibilities of DSS are illustrated by real numerical examples that concern JAT Airways' flight schedule disturbances.  相似文献   

12.
The discrepancy between the projected demand for arrival slots at an airport and the projected available arrival slots on a given day is resolved by the Ground Delay Program (GDP). The current GDP rationing rule, Ration-by-Schedule, allocates the available arrival slots at the affected airport by scheduled arrival time of the flights with some adjustments to balance the equity between airlines. This rule does not take into account passenger flow and fuel flow performance in the rationing assignment tradeoff.This paper examines the trade-off between passenger delays and excess surface fuel burn as well as airline equity and passenger equity in GDP slot allocation using different rationing rules. A GDP Rationing Rule Simulator (GDP-RRS) is developed to calculate performance and equity metrics for all stakeholders using six alternate rules. The results show that there is a trade-off between GDP performance and GDP equity. Ration-by-Passengers (a rule which maximizes the passenger throughput) decreased total passenger delay by 22% and decreased total excess fuel burn by 57% with no change in total flight delay compared to the traditional Ration-by-Schedule. However, when the airline and passenger equity are primary concerns, the Ration-by-Schedule is preferred.  相似文献   

13.
Several significant events between 2007 and 2009 impacted flight demands and the abilities of the three major New York area airports to handle demand. This paper assesses the results of applying a probabilistic simulation method – which isolates the individual contributions of changes in flight demand and changes in airport throughput performance to changes in flight delays – to diagnose how these different events may have caused operational changes at these airports, and in turn, how the results may be used to inform policies for appropriate countermeasures. The analysis revealed two key observations. Firstly, certain patterns in throughput performance shifts caused the most significant delays, and were more likely to have been caused by controller staffing issues rather than caps. Secondly, relatively constant average delays from one year to the next may result from significant demand drops accompanied by large throughput performance degradations at an airport. This suggests that not only operational limitations on capacity encourage airlines to reduce schedules, but that changed demands can also impact throughput performance. Overall, the analysis indicates that caps may not have provided their fully intended delay benefits. Although they successfully reduced overall flight demands at LGA and JFK, they also directly limited throughput performance at critical times, in turn limiting delay benefits. In addition, demands at the busiest times of the day appear to be relatively inelastic to these operational limitations, insofar as demand profiles at EWR and JFK remained “peaky” in 2008 and 2009. Also, the recession was largely responsible for reducing demands at the airports in 2009, but the delay benefits of this were dampened by a corresponding throughput performance degradation. Based on the above observations, a more direct demand management policy combined with policies that focus on maintaining high staffing capabilities at critical times of the day may be considered, to reduce the likelihood of major queue formation on days that do experience sustained demands. The results also suggest that a more flexible caps system, particularly during times of heavy queues, could be explored. Although airport practitioners have keen understandings of how their airports operate, without the support of quantitative analysis tools, it can be more difficult to argue the need for appropriate countermeasures. An analysis such as the one presented here can provide the detailed quantitative substantiation required to build cases for these targeted policy directives and infrastructure investments.  相似文献   

14.
Abstract

This paper develops a heuristic algorithm for the allocation of airport runway capacity to minimise the cost of arrival and departure aircraft/flight delays. The algorithm is developed as a potential alternative to optimisation models based on linear and integer programming. The algorithm is based on heuristic (‘greedy’) criteria that closely reflect the ‘rules of thumb’ used by air traffic controllers. Using inputs such as arrival and departure demand, airport runway system capacity envelopes and cost of aircraft/flight delays, the main output minimises the cost of arrival and departure delays as well as the corresponding interdependent airport runway system arrival and departure capacity allocation. The algorithm is applied to traffic scenarios at three busy US airports. The results are used to validate the performance of the proposed heuristic algorithm against results from selected benchmarking optimisation models.  相似文献   

15.
Abstract

When airlines are faced with some unforeseen short-term events, they have to reconstruct their flight schedules. Although aircraft recovery decisions affect passengers, these disrupted passengers and recovering them have not been explicitly considered in most previous aircraft recovery models. This paper presents an assignment model for airline schedule recovery which recovers both aircraft and disrupted passengers simultaneously, using a rolling horizon time framework. Our model examines possible flight retiming, aircraft swapping, over-flying, ferrying, utilization of reserve aircraft, cancellation and passenger reassignment to generate an efficient schedule recovery plan. The model ensures that the schedule returns to normal within a certain time and the objective is to minimize operational recovery aircraft cost, cancellation and delay cost as well as disrupted passenger cost. The model is tested using a data-set with two disruption scenarios. The computational results show that it is capable of handling the integrated aircraft and passenger recovery problem successfully.  相似文献   

16.
A sophisticated flight schedule might be easily disrupted due to adverse weather, aircraft mechanical failures, crew absences, etc. Airlines incur huge costs stemming from such flight schedule disruptions in addition to the serious inconveniences experienced by passengers. Therefore, an efficient recovery solution that simultaneously decreases an airline's recovery cost while simultaneously mitigating passenger dissatisfaction is of great importance to the airline industry. In this paper, we study the integrated airline service recovery problem in which the aircraft and passenger schedule recovery problems are simultaneously addressed, with the objective of minimizing aircraft recovery and operating costs, passenger itinerary delay cost, and passenger itinerary cancellation cost.Recognizing the inherent difficulty in modeling the integrated airline service recovery problem within a single formulation (due to its huge solution space and quick response requirement), we propose a three-stage sequential math-heuristic framework to efficiently solve this problem, wherein the flight schedules and aircraft rotations are recovered in the first stage, Then, a flight rescheduling problem and passenger schedule recovery problems are iteratively solved in the next two stages. Time-space network flow representations, along with mixed-integer programming formulations, and algorithms that take advantages of the underlying problem structures, are proposed for each of three stages. This algorithm was tested on realistic data provided by the ROADEF 2009 challenge and the computational results reveal that our algorithm generated the best solution in nearly 72% of the test instances, and a near-optimal solution was achieved in the remaining instances within an acceptable timeframe. Furthermore, we also ran additional computational runs to explore the underlying characteristics of the proposed algorithm, and the recorded insights can serve as a useful guide during practical implementations of this algorithm.  相似文献   

17.
Decision making for airport terminal planning, design and operations is a challenging task, since it should consider significant trade-offs regarding alternative operational policies and physical terminal layout concepts. Existing models and tools for airport terminal analysis and performance assessment are too specific (i.e., models of specific airports) or general simulation platforms that require substantial airport modelling effort. In addition, they are either too detailed (i.e., microscopic) or too aggregate (i.e., macroscopic), affecting, respectively, the flexibility of the model to adapt to any airport and the level of accuracy of the results obtained. Therefore, there is a need for a generic decision support tool that will incorporate sufficient level of detail for assessing airport terminal performance. To bridge this gap, a mesoscopic model for airport terminal performance analysis has been developed, that strikes a balance between flexibility and realistic results, adopting a system dynamics approach. The proposed model has a modular architecture and interface, enabling quick and easy model building and providing the capability of being adaptable to the configuration and operational characteristics of a wide spectrum of airport terminals in a user-friendly manner. The capabilities of the proposed model have been demonstrated through the analysis of the Athens International Airport terminal.  相似文献   

18.
On the relationship between airport pricing models   总被引:1,自引:0,他引:1  
Airport pricing papers can be divided into two approaches. In the traditional approach the demand for airport services depends on airport charges and on congestion costs of both passengers and airlines; the airline market is not formally modeled. In the vertical-structure approach instead, airports provide an input for an airline oligopoly and it is the equilibrium of this downstream market which determines the airports’ demand. We prove, analytically, that the traditional approach to airport pricing is valid if air carriers have no market power, i.e. airlines are atomistic or they behave as price takers (perfect competition) and have constant marginal operational costs. When carriers have market power, this approach may result in a surplus measure that falls short of giving a true measure of social surplus. Furthermore, its use prescribes a traffic level that is, for given capacity, smaller than the socially optimal level. When carriers have market power and consequently both airports and airlines behave strategically, a vertical-structure approach appears a more reasonable approach to airport pricing issues.  相似文献   

19.
This paper introduces an empirically driven, non-parametric method to isolate and estimate the effects that changes in demand and changes in throughput have on delay – in particular, arrival and departure flight delay at airport runways. Classic queuing concepts were used to develop a method by which an intermediate, or counterfactual, queuing scenario could be constructed, to isolate the delay effects due to shifts in demand and throughput. This method includes the development of a stochastic throughput function that is based entirely on data and has three key features. Firstly, the function relies on non-parametric, empirically-based probability distributions of throughput counts. Secondly, facility capacity needs not be explicitly defined, as it is implicitly included in the probability distributions of throughput. Thirdly, the throughput performance function preserves the effect of factors that cause capacity (and, therefore, throughput) to fluctuate over a given period. Temporal sequences of high, moderate, and low capacity are maintained between the observed and counterfactual scenarios. The method was applied to a case study of the three major New York area airports of LaGuardia (LGA), Newark Liberty (EWR), and John F. Kennedy (JFK), using operational data extracted from the Federal Aviation Administration’s (FAA’s) Aviation System Performance Metrics (ASPM) database. The focus was on the peak summer travel seasons of 2006 and 2007, as these airports experienced record levels of delay in 2007. The results indicate that decreases in both demand and throughput were experienced at LGA and EWR, although the decreases in throughput had more significant effects on operational delays as they increased overall at these airports. At JFK, the increase in departure throughput was not sufficient to offset the increase in departure demands. For arrivals, demand increased and throughput decreased. These trends caused a significant growth in delay at JFK between 2006 and 2007.  相似文献   

20.
Abstract

This paper presents a novel application of a Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to generate an efficient time-effective multi-fleet aircraft routing algorithm in response to the schedule disruption of short-haul flights. It attempts to optimize objective functions involving ground turn-around times, flight connections, flight swaps, total flight delay time and a 30-minute maximum delay time of original schedules. The MMGA approach, which combines a traditional Genetic Algorithm (GA) with a multi-objective optimization method, can address multiple objectives at the same time, then explore the optimal solution. The airline schedule disruption management problem is traditionally solved by Operations Research (OR) techniques that always require a precise mathematical model. However, airline operations involve too many factors that must be considered dynamically, making a precise mathematical model difficult to define. Experimental results based on a real airline flight schedule demonstrate that the proposed method, Multi-objective Optimization Airline Disruption Management by GA, can recover the perturbation efficiently within a very short time. Our results further demonstrate that the application can yield high quality solutions quickly and, consequently, has potential to be employed as a real-time decision support tool for practical complex airline operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号