首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
道路交通事故精准预测是有效提升交通安全的重要手段,由于事故数据经常呈现非线性、波动性、无周期性等特征,现有的算法存在预测效果不佳的问题。为此本文提出基于集合经验模态分解降噪算法(ensemble empirical mode decomposition,EEMD)和优化长短时记忆神经网络(long short-term memory,LSTM)的交通事故数量预测模型。在单一模型的基础上,引入降噪算法EEMD对噪声大的交通事故时间序列进行降噪处理,利用EEMD对事故时间序列进行分解得到多个子序列和1个残差项;基于粒子群优化算法(particle swarm optimization,PSO)优化LSTM网络结构参数,并在LSTM的最优网络结构下提取数据中的时间特征信息进行预测,对各子序列及残差的预测结果求和得到最终预测结果。研究结果表明:相对于EMD-PSO-LSTM,PSO-LSTM,EEMD-LSTM,LSTM这4个模型,EEMD-PSO-LSTM的预测效果最好,其对应的预测误差ermse分别降低了8.7%、48.3%、53.1%、57.6%,误差em...  相似文献   

2.
准确预测短时出租车速度是识别驾驶员异常加减速行为的前提,有助于提升乘客的安全与舒适。以城市中出租车实时移动速度为研究对象,研究了基于XGBoost的短时出租车速度预测模型。将出租车的移动速度数据集划分为训练集和测试集,构造滑动时间窗口,以时间窗口内的出租车历史移动速度的时间序列为输入变量,以出租车当前时间的移动速度为输出变量,采用前向验证的方法进行模型评估。利用基于贝叶斯算法的hyperopt模块实现模型参数的快速优化,得到模型最优参数组合,并基于深圳市2013年10月22日的出租车GPS轨迹数据集进行算例分析,将模型的预测结果与非参数回归模型、神经网络模型预测结果进行比较。研究表明:所构建的短时出租车速度预测模型的平均绝对误差(MAE)为9.841,均方根误差(RMSE)为12.711,均低于非参数回归模型和神经网络模型,提高了出租车速度的预测精度;由于出租车速度序列缺乏规律性,调整后的R2(R2 _adjusted)为0.592,且相较于其他2个模型,XGBoost模型在出租车速度发生急剧变化的时间点附近具有更优的拟合效果,避免了过拟合造成的预测精度下降。   相似文献   

3.
提升公交车到站时间预测精度可以提高乘客出行效率和公交服务质量、节省公交运营成本。通过分析公交车运行的影响因素、周期与相关性,文章建立了基于人工大猩猩部队算法的卷积双向长短期记忆神经网络(GTO-CNN-BiLSTM),通过人工大猩猩部队算法进行超参数寻优,获得更好的预测效果,采用呼和浩特62路公交到站时间数据进行预测,验证模型预测精度。研究表明:不论是在工作日还是非工作日,早晚高峰还是平峰,GTO-CNN-BiLSTM都能有最优预测效果,相较于卷积双向长短期记忆神经网络(CNN-BiLSTM)、双向长短期记忆神经网络(BiLSTM)和长短期记忆神经网络(LSTM),GTO-CNN-BiLSTM预测结果的平均绝对误差至少减少7.57%,均方根误差至少减少3.84%,平均绝对百分比误差至少减少7.86%。  相似文献   

4.
张耀方  陈坚 《公路》2022,67(1):221-227
为了准确预测高速公路短时交通流量,以制定科学合理的运营管理方案,运用高速公路联网收费数据和外界环境天气数据,实现数据清洗、预处理,挖掘得到日期、时段、车型等有效特征,构建基于GBDT算法的交通流短时预测模型。以成渝高速公路短时交通流预测为实例分析对象。结果表明,预测误差较BP神经网络模型、RF模型、SVM模型分别降低4.43%、0.32%、1.01%,表明模型具有较好的可靠性和有效性。  相似文献   

5.
准确实时的短时交通流预测是智能交通诱导的关键.为提高短时交通流预测精度,研究了基于相空间重构和粒子群优化高斯过程回归的短时交通流预测模型.针对交通流时间序列的非线性、复杂性和随机性,基于混沌理论确定原始时间序列的最佳延迟时间和嵌入维数,进行相空间重构,获得与原始数据具有相同动态特性的更为合理的模型输入-输出数据集.利用粒子群算法改进传统高斯过程模型参数优化的不足,构建预测模型.以重构序列作为预测模型的训练集和测试集,实现短时交通流预测.采用北京市东四环快速路检测器实测数据对比分析模型预测效果.结果表明,基于PSR和PSO-GPR的短时交通流预测模型评价指标均优于对比模型,其中绝对误差平均降低4.88,绝对百分比误差平均降低3.97%,均等系数达到0.963,所研究模型能够有效提高短时交通流预测精度.   相似文献   

6.
近些年随着道路三维检测技术的兴起,越来越多的路段开始使用三维道路检测车对道路状况进行检测。以表征路面使用性能优劣的重要指标——路面状况指数为研究目标,利用ARAN9000三维多功能道路检测车采集的实际路面数据,对路面状况指数进行了预测。首先,考虑路面病害、环境、路面结构等影响因素,运用数据挖掘技术对加拿大安大略省某公路路面状况指数的相关数据进行了数据清洗、特征筛选等处理分析工作。然后,构建了路面状况指数的机器学习预测模型,得到多元线性回归模型、神经网络模型与随机森林模型的复相关系数R~2分别为0.562,0.711,0.895。随机森林模型预测的路面状况指数精度较神经网络模型提高了0.184,误差降低了1.599,训练速度提升了33 s。最后,选择精度较高的随机森林模型进行了优化。由于输入变量较多,无法通过简单的统计分析确定应修正或删除的异常数据,因此选择在构建模型并预测后,通过预测值与真实值的拟合效果确定异常值,再使用修正后的数据重新对模型进行循环训练,使之达到当前模型训练最优。结果表明:改进后的随机森林模型预测效率和预测精度更高,R~2达到0.898。提出的路面状况指数预测模型是准确而有效的。  相似文献   

7.
为交通管理部门和出行大众提供精准的事故高发黑点预警信息具有重要的意义。为此,研究了1种基于双向长短期记忆神经网络(bidirectional long short-term memory neural network,BiLSTM)的黑点路段交通事故频次预测方法。通过对传统K-means聚类算法的k值选取进行改进,实现了道路交通事故黑点的有效识别,并统计黑点每天事故数作为事故时间序列;利用小波分解对该序列进行降噪处理,通过多层网格搜索法对隐藏层层数、神经元个数等模型的参数进行标定,构建了基于BiLSTM网络的事故频次预测模型;采用滑动窗口的方式将事故时间序列作为内部参数输入模型,以交通流量、节假日、事故天气和事故发生环境等特征作为外部参数,对事故黑点路段未来1 d内可能发生的事故数进行预测,并基于预测结果提出了1种事故黑点路段交通事故预警模型;以浙江省宁波市交警部门某辖区2020年4月—2021年9月常态采集的事故数据为测试集,以7 d的事故数据预测未来1 d的黑点路段事故频次,将BiLSTM模型与门控循环神经网络(GRU)模型、长短期记忆神经网络(LSTM)模型、反向传播神经网络(B...  相似文献   

8.
铁路运输的低碳发展对交通系统实现“双碳”战略目标有着重要意义。针对当前铁路运输碳排放预测研究较少、预测精度不高的问题,考虑碳排放时间序列数据中历史信息和当前信息间的相关性,引入滑动窗口,结合长短期记忆(LSTM)网络,构建铁路运输碳排放量预测模型。采用灰色关联分析法计算铁路运输碳排放量各影响因素的关联度值,筛选铁路运输碳排放量的关键影响因素,使用高关联性数据作为预测模型的输入变量,提高预测精度;应用LSTM网络为基础预测模型,通过引入滑动窗口改进神经网络的数据输入;考虑未来减排政策变化对铁路运输碳排放量的影响,融合基于动态政策的情景分析,构建铁路碳排放预测模型,并利用多项式误差拟合方法进行误差修正,提高预测结果准确性。以1980—2019年铁路运输碳排放相关数据为例,从现有文献中总结出17个铁路碳排放影响因素,利用灰色关联分析法从中筛选出6个关键因素,通过滑动窗口对筛选出的数据进行子序列分割,测试不同长度窗口下的预测精度,选择最优窗口参数,建立改进LSTM模型进行预测,并将预测结果与原LSTM、BPNN和RNN模型进行对比,结果表明:改进LSTM模型将相对误差平均值降低至0.392%,...  相似文献   

9.
为实现降雨条件下高速公路路段行程时间短时预测,掌握恶劣天气下交通信息、提供交通诱导和决策支持,在已获取交通和气象数据基础上应用半距离法估计路段行程时间.并以遗传算法优化的径向基函数(RBF)神经网络和K最近邻非参数回归(KNN)算法为基础,提出1种基于动态权重的行程时间组合预测模型.该组合预测模型的融合权重依据定义的动态误差的变化而持续调整,以保证子模型中精度较高的预测结果对最终结果有较大影响,从而提高预测精度.选取京港澳高速公路湖北省境内军山-武汉南路段,分析该路段降雨条件下行程时间特性,掌握其不同时段和不同降雨强度下行程时间变化规律,并进行预测.结果表明,组合预测模型能有效预测行程时间高峰变化,反应及时且预测精度较高,达到0 .98 ,平均绝对百分误差1 .99% ;而单一的RBF神经网络和KNN算法的平均绝对百分误差分别为3 .40% 和2 .60% ,且拟合程度不如组合预测模型.   相似文献   

10.
为了提高城市道路交通状态判别的正确性与稳定性,研究了一种基于遗传模拟退火算法改进的FCM算法与概率神经网络(PNN)结合的短时交通流状态判别方法.针对传统FCM算法会收敛到局部最优解的问题,利用遗传模拟退火算法对其进行改进,优化算法初始聚类中心;将已分类的数据分为训练集与测试集对概率神经网络(PNN)模型进行训练与测试,通过对径向基函数的扩展速度的优化提高PN N算法的准确性;并利用厦门市城市道路地磁检测数据对模型进行实例验证及性能分析.结果表明,文中方法能够有效的实现交通状态的判别,且能够得到全局最优解;同竞争神经网络模型、GRNN模型、SVM模型相比,文中模型的交通状态判别正确率分别提高2.1%,4.5%,2.7%,且具有更好的稳定性.   相似文献   

11.
路面使用性能随路龄的增大而减弱,路面性能衰退情况直接影响路面养护对策的选择和养护资金的投入。为了解决养护对策选择带来的资金浪费与养护后性能不佳等问题,文章以灰色系统理论为基础,通过反演法来计算衰退路龄,构建了一个改进的GM(1,1)公路沥青路面使用性能预测模型。选取宁夏国省干线公路中部分路段路面破损状况指数的数据进行分析,对数据筛选后建立GM(1,1)模型,根据选取的实测数据来反演需要预测路段的衰退路龄,代入改进的GM(1,1)模型对路面性能进行预测,验证其准确性,并与直接采用灰色预测法得到的结果进行比对。结果表明:改进GM(1,1)法与直接使用灰色预测模型相比,剔除了路面进行养护工程后路面性能指数上升的路段,不会出现预测失真的情况,预测精度较好,更符合宁夏干线公路路面使用性能的发展规律。  相似文献   

12.
准确有效地预测短时交通流量是实施交通诱导及控制的前提与关键,但由于短时交通流量具有高度复杂性、随机性、非线性和不确定性等特性,导致预测难度高、准确度低、实时性差。基于此,文中综合利用投影寻踪技术和BP神经网络的优点,提出了运用投影寻踪回归模型和BP神经网络技术相结合建立组合模型的预测方法,并编写出模型的算法程序。将该组合模型应用于路段短时交通量的实时预测实例,实验结果证实该组合模型具有较好的预测能力和较强的时效性。  相似文献   

13.
城市路网短时交通流预测是实现智慧城市的关键技术,随着人工智能的发展,越来越多的深度学习算法被应用于城市道路交通状态估计和预测研究。但是深度学习因缺少对交通流演化机理的刻画导致其可解释性不强,而交通流解析模型常因预测精度问题导致其应用效果受到限制。为了取长补短,首先对路段传输模型(Link Transmission Model,LTM)进行改进,提出了可以利用真实数据实时校准仿真网络从而提高预测精度的数据驱动型路段传输模型(Data-driven Link Transmission Model,D2LTM),并在此基础上引入时空深度张量神经网络模型(Spatial-temporal Deep Tensor Neural Networks,ST-DTNN)来捕获网络交通流数据中的时间维、空间维和深度维特征信息,形成融合路段传输模型和深度学习的城市路网短时交通流预测模型D2LTM-STDTNN。该混合模型一方面通过D2LTM机理模型来揭示交通流演化的基本规律,发挥其对城市路网交通流状态时空演化过程的精细刻画能力,增强混合模型机理的可解释性;另一方面利用ST-DTNN模型强大的高维数据挖掘能力和动态特征学习能力,提高城市级路网交通流的短时预测精度。该模型还考虑了交叉口不同转向的短时预测问题,具有更细的空间粒度和时间粒度,因此也具有更大的预测难度。实测结果表明:D2LTM-STDTNN混合模型相对于基准模型预测精度更高,且具备模拟演化机理方面的优势,提升了城市路网短时交通流状态预测能力,揭示了路段间的交通流动态演化规律,可为网络交通流模拟推演和主动管控提供了技术支撑。  相似文献   

14.
为了提高短时交通流的预测精度,向交通管理部门和出行者提供更加准确可靠的交通信息,基于非参数回归与支持向量回归方法的特点,提出了一种混合预测模型(KNN-SVR)。该模型利用K近邻方法的搜索机制,重建与当前交通状态近似的历史交通流时间序列,然后利用支持向量回归原理实现短时交通流预测。针对实际的交通流数据,考虑预测路段上下游交通流的影响,对提出的KNN-SVR模型的预测精度进行了分析。研究结果表明:同时考虑预测路段和其邻近路段交通流影响的KNN-SVR模型具有更好的预测精度,其预测误差最小,平均为8.29%,而仅仅考虑预测路段交通流影响的KNN-SVR模型,其预测误差略高,平均为9.16%;KNN-SVR模型的预测精度优于传统单一的预测方法,如K-近邻非参数回归、支持向量回归以及神经网络方法。  相似文献   

15.
针对因选取的健康因子不理想导致锂电池剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于充电健康因子优化和数据驱动的电池RUL预测方法,首先提取电池充电过程中的各种健康因子,再使用两步最大信息系数法优化特征子集得到优化的健康因子,最后使用带有注意力机制的时间卷积神经网络(ATCN)预测电池的剩余使用寿命,通过对美国国家航空航天局(NASA)锂电池老化数据的研究,验证了所提出的锂电池RUL预测框架,并与简单循环神经网络(SimpleRNN)、长短期记忆(LSTM)神经网络和门控循环单元(GRU)神经网络等建模方法进行比较,结果表明,所提出的方法在各数据集上均取得了最优的预测结果。  相似文献   

16.
空中交通流量短时预测是空中交通管理的基础,是有效缓解交通拥堵问题的前提。为提高空中交通流量短时预测的精度,减小空中交通管制员的工作压力,提出了基于小波优化GRU-ARMA的空中交通流量短时预测方法。在传统预测方法的基础上,通过小波变换对原始流量数据进行多尺度分解,提取不同频率交通流量的细节特征,对原始流量数据进行预处理。同时,根据小波变换,在低频处将频率细分作为趋势项,高频处将时间细分作为噪声项。其中,趋势项反映了空中交通流量随时间演化的整体趋势性,噪声项反映了随机因素对空中交通流量的综合影响。使用门控循环单元(GRU)神经网络模型预测趋势项,自回归滑动平均模型(ARMA)模型预测噪声项;将趋势项和噪声项的预测值叠加,得到最终的短时流量预测值。误差分析表明,该方法在每个预测点上的误差保持在2%左右,预测效果稳定;而直接采用原始流量数据进行预测的GRU、BiLSTM、CNN-LSTM神经网络模型及单一的ARMA模型,每个点的预测误差在5%~37.14%之间。与GRU、BiLSTM、CNN-LSTM神经网络模型相比,该模型的预测精度分别提高了3.02%,5.39%,5.05%。   相似文献   

17.
曾宪堂  孙昊 《公路》2022,67(2):366-370
高速公路短时交通流预测对于高速公路智能管控具有重要意义。通过总结不同文献中关于高速公路短时交通流预测的研究内容,发现了目前高速公路短时交通流预测研究存在的不足,给出了高速公路短时交通流预测的流程,对高速公路短时交通流预测模型进行了分类比较,明确了不同模型的适用场景和优缺点,通过具体案例数据分析比较了KNN模型、SVM模型、LSTM模型的预测精度,研究发现KNN模型的预测精度最高,明确了数据质量和算法精度是交通流预测的关键。本研究可以为高速公路短时交通流预测发展提供借鉴。  相似文献   

18.
针对大跨度桥梁等工程结构在紊流场作用下的抖振响应预测问题,以薄平板为例,将数值模拟的薄平板抖振响应时程结果作为训练与测试数据,选用风场时程数据作为输入,并将薄平板的横向位移、竖向位移以及扭转角响应时程数据作为输出,分别采用带外部输入的非线性自回归(NARX)、长短期记忆(LSTM)、卷积长短期记忆(Conv LSTM)、注意力机制长短期记忆(LSTM-AM)神经网络模型预测薄平板的抖振响应。进一步地,将迁移学习(TL)方法与上述神经网络模型相结合,提出基于Davenport准定常抖振理论获取大量源任务数据的方法。通过筛选出的可用源任务数据,训练上述神经网络模型并经共享权重、微调参数后完成对薄平板目标任务数据的预测,并最终构建了TL-Conv LSTM-AM组合模型来预测薄平板抖振响应的思路。研究结果表明:在薄平板抖振响应预测中,LSTM模型的预测精度要高于NARX模型;引入卷积计算和注意力机制均有利于时序数据的预测,因此Conv LSTM和LSTM-AM模型的抖振响应预测精度相比单一的LSTM模型的预测精度要高;当上述神经网络模型结合迁移学习方法后能有效提升抖振响应的预测精度,但在局部...  相似文献   

19.
针对平面交叉口四方向进口的交通流量具有时空相关性的特点,提出了一种基于长短期记忆LSTM(Long Short-Term Memory)网络的平面交叉口短时交通流预测模型。将以四方向进口历史交通流数据为基础的四维时间序列数据输入LSTM模型中进行训练,并使用OpenITS合肥示范区数据对提出的模型进行验证。结果表明,与传统的BP神经网络相比,该方法预测效果具有更好的表现,是一种预测精度高的预测方法。  相似文献   

20.
停车信息是智能停车诱导系统得以成功实施的关键与基础, 被广泛认为能够有效解决当前停车难问题。鉴于停车信息在解决停车问题中的重要性, 研究了基于粒子群和LSTM模型的变区间短时停车需求预测方法。为充分发挥数据在提高模型预测精度的作用, 提出了以马尔可夫生灭过程为基础概率转移模型, 将停车到达率、离开率量化车随时间变化的停车需求, 通过标定实际的停车到达率和离开率, 确定预测模型的动态预测间隔与时段; 采用LSTM网络作为基础预测模型, 并利用粒子群优化算法优化网络参数。以吉林大学南岭校区停车场为研究对象, 按工作日与非工作日分别对停车数据进行预测并与其他预测模型进行对比分析。结果表明: 提出的停车需求预测模型在工作日的预测平均绝对误差为2.53辆, 均方误差为11.89辆; 非工作日的预测平均绝对误差为2.32辆, 均方误差为10.89辆。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号