共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose for the analysis of capacity usage is to utilize the rail infrastructure in a more efficient and practical way. The practical and theoretical challenge of the rail capacity is its dynamics and uncertainty, which are common in China and elsewhere. Based on the capacity balance, a train service-demand intention set (TSDIS) at High-Speed Rail (HSR) line (t@l-TSDIS) is defined, which takes the number of trains, the average speed, the heterogeneity and the stability as the core elements for the capacity usage. For dynamics and uncertainty, we update the norm for capacity measure as the time needed to fulfill the task list t@l-TSDIS. Then we develop the objectives and constraints for the Mathematical Program for Line Capacity (MPLC), which aims at minimization of heterogeneity and running time as well as maximization of reliability. For solving MPLC, the Pareto Archived Evolutionary Strategy (PAES) and fuzzy logic penalty function are introduced. Furthermore we propose a rolling optimization tactic oriented by the practical problem, which combines the improved Pareto Archived Evolutionary Strategy (iPAES) with an interactive technique. In a case study, we apply the proposed ideas and methodology to Beijing-Shanghai HSR (BS-HSR) line much closer to the railway practice. By using the computer language C# to compile the Console program, Pareto optimized results for MPLC are achieved, including the standard and practical values for the heterogeneity indices, reliability indices and running time indices. We also discuss the sensitivity of the heterogeneity index. This research demonstrates that it is useful to analyze the line capacity usage for China HSR with the proposed optimization approach. 相似文献
2.
In order to solve the safety operation problems of High-speed rail (HSR) in different areas and different sections under the rainstorm condition, an early warning process for the rainstorm disaster is designed. Furthermore, in order to control the operation risk, a HSR operation program with different rainstorm degrees is given out based on the analysis of rainstorm warning mechanism and rainstorm warning threshold in this paper. In addition, considering the reality that natural conditions vary greatly and the rainfall is very uneven, a data perception model of rainstorm (DPM) is proposed with correction coefficients for solving the calculation problem of precipitation for rainstorm warning. The DPM mainly adopts Paulhus’s empirical equation and uses the linear function to improve it for calculating the precipitation, which is able to calculate the hourly precipitation in different regional environments, and also effectively evaluate the rainstorm warning level of high-speed rail in this period. It can calculate and monitor the process by big data and MATLAB. The result of case analysis shows that the DPM has good practical value for solving the safety operation problem of HSR in different areas under rainstorm environment. 相似文献
3.
4.
Short-term forecasting of high-speed rail (HSR) passenger flow provides daily ridership estimates that account for day-to-day demand variations in the near future (e.g., next week, next month). It is one of the most critical tasks in high-speed passenger rail planning, operational decision-making and dynamic operation adjustment. An accurate short-term HSR demand prediction provides a basis for effective rail revenue management. In this paper, a hybrid short-term demand forecasting approach is developed by combining the ensemble empirical mode decomposition (EEMD) and grey support vector machine (GSVM) models. There are three steps in this hybrid forecasting approach: (i) decompose short-term passenger flow data with noises into a number of intrinsic mode functions (IMFs) and a trend term; (ii) predict each IMF using GSVM calibrated by the particle swarm optimization (PSO); (iii) reconstruct the refined IMF components to produce the final predicted daily HSR passenger flow, where the PSO is also applied to achieve the optimal refactoring combination. This innovative hybrid approach is demonstrated with three typical origin–destination pairs along the Wuhan-Guangzhou HSR in China. Mean absolute percentage errors of the EEMD-GSVM predictions using testing sets are 6.7%, 5.1% and 6.5%, respectively, which are much lower than those of two existing forecasting approaches (support vector machine and autoregressive integrated moving average). Application results indicate that the proposed hybrid forecasting approach performs well in terms of prediction accuracy and is especially suitable for short-term HSR passenger flow forecasting. 相似文献
5.
6.
Since the Taiwan High Speed Rail operations, Taiwan's transportation market entered into a new era. Because of its competitive service of speed, convenience, environmental concerns and comfort, the High Speed Rail has not only made significant changes but has played a significant role in Taiwan's transportation. However, Taiwan now is an aging society. Due to the physical constraints among the elderly, demands to redesign the traffic system and maintain transportation safety are essential considerations. In the current market, Taiwan's transportation construction is facing fewer barriers; however, it must still improve, especially considering the health of the elderly. Thus, this study investigates elderly passengers' demands and further examined the relationships among service quality, corporate image, customer satisfaction, and behavioral intention. According to empirical analytical results based on structural equation modeling (N = 341), satisfaction directly affected travel behaviors, while service quality and corporate image played indirect roles. In addition, service quality plays a significant role on the effect of satisfaction. This study provides empirical evidence to indicate the quality of the accessible environment affects not only the effectiveness and efficiency of service quality, but also, the corporate image. The results provide valuable references for critically managing the elderly's usage of the high speed rail transportation service. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
7.
Planning a set of train lines in a large-scale high speed rail (HSR) network is typically influenced by issues of longer travel distance, high transport demand, track capacity constraints, and a non-periodic timetable. In this paper, we describe an integrated hierarchical approach to determine line plans by defining the stations and trains according to two classes. Based on a bi-level programming model, heuristics are developed for two consecutive stages corresponding to each classification. The approach determines day-period based train line frequencies as well as a combination of various stopping patterns for a mix of fast trunk line services between major stations and a variety of slower body lines that offer service to intermediate stations, so as to satisfy the predicted passenger transport demand. Efficiencies of the line plans described herein concern passenger travel times, train capacity occupancy, and the number of transfers. Moreover, our heuristics allow for combining many additional conflicting demand–supply factors to design a line plan with predominantly cost-oriented and/or customer-oriented objectives. A range of scenarios are developed to generate three line plans for a real-world example of the HSR network in China using a decision support system. The performance of potential train schedules is evaluated to further examine the feasibility of the obtained line plans through graphical timetables. 相似文献
8.
This paper presents a novel application of static traffic assignment methods, but with a variable time value, for estimating the market share of high‐speed rail (HSR) in the northwest–southeast (NW–SE) corridor of Korea currently served by air, conventional rail and highway modes. The proposed model employs a time–space network structure to capture the interrelations among competing transportation modes, and to reflect their supply‐ and demand‐side constraints as well as interactions through properly formulated link‐node structures. The embedded cost function for each network link offers the flexibility for incorporating all associated factors, such as travel time and fare, in the model computation, and enables the use of a distribution rather than a constant to represent the time–value variation among all transportation mode users. To capture the value‐of‐time (VOT) of tripmakers along the target corridor realistically, this study has developed a calibration method with aggregate demand information and key system performance data from the NW–SE corridor. 相似文献
9.
It is sometimes argued that standard state-of-practice logit-based models cannot forecast the demand for substantially reduced travel times, for instance due to High Speed Rail (HSR). The present paper investigates this issue by reviewing the literature on travel time elasticities for long distance rail travel and comparing these with elasticities observed when new HSR lines have opened. This paper also validates the Swedish long distance model, Sampers, and its forecast demand for a proposed new HSR, using aggregate data revealing how the air–rail modal split varies with the difference in generalized travel time between rail and air. The Sampers long distance model is also compared to a newly developed model applying Box–Cox transformations. The paper contributes to the empirical literature on long distance travel, long distance elasticities and HSR passenger demand forecasts. Results indicate that the Sampers model is indeed able to predict the demand for HSR reasonably well. The new non-linear model has even better model fit and also slightly higher elasticities. 相似文献
10.
Padma Seetharaman Madhu Errampalli Velmurugan Senathipati Anuradha Shukla Subhamay Gangopadhyay 《运输规划与技术》2013,36(8):823-838
This paper analyzes vehicular speeds at a micro level and studies the relationships between the important elements of speed, namely space mean speed (SMS) and time mean speed (TMS) under heterogeneous traffic conditions. Vehicular speed data were collected at selected road stretches around Delhi, India, in an attempt to understand and model the type of relationships between SMS and TMS under heterogeneous traffic conditions. To demonstrate the superiority of the proposed models, comparisons are made with existing traditional models. The results reveal that the proposed models are consistent in predicting speeds with high accuracy. 相似文献
11.
This paper reports the results of a stated-preference study aimed at investigating how transport decisions are made by receivers
or by transport operators about the potential use of an urban freight consolidation centre in the city of Fano, Italy. Because
there are no revealed preference data, a stated-choice methodology is used. The stated-choice experiments present two alternatives—one
using a private vehicle subject to various traffic regulations and one using the urban freight consolidation centre with varying
cost and efficiency levels. Conventional discrete choice data modelling shows that the potential demand is influenced mainly
by the distance of the parking bay from the shop, by access permit cost, by the service cost of the urban freight consolidation
centre, and by the delay in delivery time. Simulations are then performed to assess how the potential demand is affected by
various incentives and regulations affecting urban goods distribution.
Edoardo Marcucci is Associate Professor of Applied Economics at the Faculty of Political Sciences, University of Roma Tre, Italy, General Secretary of the Italian Society of Transportation Economists, and co-founder of the Kuhmo—Nectar Conference and Summer School Series on Pricing, Financing, Regulating Transport Infrastructures and Services. He has studied freight transportation concentrating on interactions along logistic supply chains. Romeo Danielis is Full Professor at the University of Trieste, Italy. He is managing editor of European Transport\Trasporti Europei. He has published articles on input-output modelling, regional environmental policy, social costing of transport externalities, EU enlargement and on several transport issues including road pricing, the Down-Thompson paradox, energy use and CO2 emissions, freight transport demand and stated preferences. 相似文献
Edoardo MarcucciEmail: |
Edoardo Marcucci is Associate Professor of Applied Economics at the Faculty of Political Sciences, University of Roma Tre, Italy, General Secretary of the Italian Society of Transportation Economists, and co-founder of the Kuhmo—Nectar Conference and Summer School Series on Pricing, Financing, Regulating Transport Infrastructures and Services. He has studied freight transportation concentrating on interactions along logistic supply chains. Romeo Danielis is Full Professor at the University of Trieste, Italy. He is managing editor of European Transport\Trasporti Europei. He has published articles on input-output modelling, regional environmental policy, social costing of transport externalities, EU enlargement and on several transport issues including road pricing, the Down-Thompson paradox, energy use and CO2 emissions, freight transport demand and stated preferences. 相似文献
12.
The limited understanding of vehicular emissions in China, especially evaporative emissions, is one obstacle to establishing tighter standards. To evaluate tailpipe and evaporative emissions, two typical China IV vehicles and one Tier 2 vehicle with an onboard refuelling vapour recovery (ORVR) system were selected and tested. One of the China IV vehicles was fuelled with gasoline, E10 and M15, respectively, to investigate the effect of fuel properties on vehicular emissions. For each vehicle, cold-start tailpipe emission tests were conducted first, followed by an evaporation test. Based on the emission factors and real-world vehicle activity data, the annual tailpipe and evaporative hydrocarbon (HC) emissions of each vehicle were calculated and compared. The results show that E10 and M15 significantly reduced the tailpipe CO and particle number (PN) emissions but seriously aggravated the NOx emissions, especially for M15. The hot soak losses (HSLs) and diurnal breathing losses (DBLs) were slightly impacted by the fuel properties. The annual evaporative emissions with E10 and M15 were higher than that with gasoline. The ORVR system effectively controlled the evaporative emissions, especially for DBLs. Evaporative emissions from the China IV vehicles were 1.1–1.4 times the tailpipe HC emissions. Additionally, the evaporative emission factors of the China IV vehicles were almost 50% lower than the standard (2.0 g/test), whereas their annual evaporative emissions were almost 1.8–2.8 times higher than those from the Tier 2 vehicle. Therefore, controlling evaporative emissions currently remains a great need in China, and the ORVR might be a recommended evaporative control technology. 相似文献
13.
14.
This study aims to quantify the environmental impact of two retail distribution networks and offer consumers a channel that is more beneficial to the environment. The environmental impact of replenishing the packaged beverages sold in convenience stores (CVSs) and hypermarkets is assessed using the streamlined life-cycle assessment (LCA) approach. In this study, the life-cycle impact assessment (LCIA) for packaged beverages up to the point of sale illustrates the distribution-level environmental impacts of truck transportation. The matched-pair t-test shows that the environmental impacts of transporting 1800 cartons of 24-pack/10 oz. beverages to be sold in Carrefour and 7-11 stores is different at a significance level of 0.1. The transport-focused LCA is used to improve the understanding and compare the environmental characteristics of the two distribution and retail systems. This study constitutes a vehicle for communicating to both internal and external stakeholders the environmental profiles of distributing the same product sold through two retail channels. 相似文献
15.
This paper conducts a comparative discrete choice analysis to estimate consumers’ willingness to pay (WTP) for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) on the basis of the same stated preference survey carried out in the US and Japan in 2012. We also carry out a comparative analysis across four US states. We find that on average US consumers are more sensitive to fuel cost reductions and alternative fuel station availability than are Japanese consumers. With regard to the comparative analysis across the four US states, consumers’ WTP for a fuel cost reduction in California is considerably greater than in the other three states. We use the estimates obtained in the discrete choice analysis to examine the EV/PHEV market shares under several scenarios. In a base case scenario with relatively realistic attribute levels, conventional gasoline vehicles still dominate both in the US and Japan. However, in an innovation scenario with a significant purchase price reduction, we observe a high penetration of alternative fuel vehicles both in the US and Japan. We illustrate the potential use of a discrete choice analysis for forward-looking policy analysis, with the future opportunity to compare its predictions against actual revealed choices. In this case, increased purchase price subsidies are likely to have a significant impact on the market shares of alternative fuel vehicles. 相似文献
16.
To curb emissions, containerized shipping lines face the traditional trade-off between cost and emissions (CO2 and SOx) reduction. This paper considers this element in the context of liner service design and proposes a mixed integer linear programming (MILP) model based on a multi-commodity pickup and delivery arc-flow formulation. The objective is to maximize the profit by selecting the ports to be visited, the sequence of port visit, the cargo flows between ports, as well as the number/operating speeds of vessels on each arc of the selected route. The problem also considers that Emission Control Areas (ECAs) exist in the liner network and accounts for the vessel carrying capacity. In addition to using the MILP solver of CPLEX, we develop in the paper a specific genetic algorithm (GA) based heuristic and show that it gives the possibility to reach an optimal solution when solving large size instances. 相似文献
17.
Sashank Musti 《Transportation Research Part A: Policy and Practice》2011,45(8):707-720
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions. 相似文献
18.
E-hailing ride service (ERS) has become increasingly popular globally and is changing the urban mobility landscape. There is insufficient research effort in understanding the impact of ERS on travel behavior, in particular among young people. This paper aims to start filling that research gap by first collecting mode choice preference data through a stated preference survey in City of Nanjing, China and then applying nested logit (NL) models and a series of post-estimation analysis to address a number of key research questions of mode choice behavior without and with ERS. Three ERS modes are considered in the Chinese context: DiDi Taxi (D-Taxi), DiDi Express (D-Express), and DiDi Premier (D-Premier), all provided by DiDi Chuxing, the dominant ERS service provider in China. The study finds that age makes little difference in mode choice preference when ERS is introduced between the two age groups considered (18–30 and 31–45). The study results also suggest that young travelers are naturally drawn to ERS for what it represents (a technology innovation) and its business (pricing) model. ERS appears to be a competitive alternative to the conventional modes especially when they are under performed. The study also finds that ERS will likely increase vehicle kilometers traveled (VKT) considerably, which will lead to increase in on-road vehicular emissions, unless some mechanism to switch users to ridesharing is in place. 相似文献
19.
The Macroscopic Fundamental Diagram (MFD) has been recognized as a powerful framework to develop network-wide control strategies. Recently, the concept has been extended to the three-dimensional MFD, used to investigate traffic dynamics of multi-modal urban cities, where different transport modes compete for, and share the limited road infrastructure. In most cases, the macroscopic traffic variables are estimated using either loop detector data (LDD) or floating car data (FCD). Taking into account that none of these data sources might be available, in this study we propose novel estimation methods for the space-mean speed of cars based on: (i) the automatic vehicle location (AVL) data of public transport where no FCD is available; and (ii) the fused FCD and AVL data sources where both are available, but FCD is not complete. Both methods account for the network configuration layout and the configuration of the public transport system. The first method allows one to derive either uni-modal or bi-modal macroscopic fundamental relationships, even in the extreme cases where no LDD nor FCD exist. The second method does not require a priori knowledge about FCD penetration rates and can significantly improve the estimation accuracy of the macroscopic fundamental relationships. Using empirical data from the city of Zurich, we demonstrate the applicability and validate the accuracy of the proposed methods in real-life traffic scenarios, providing a cross-comparison with the existing estimation methods. Such empirical comparison is, to the best of our knowledge, the first of its kind. The findings show that the proposed AVL-based estimation method can provide a good approximation of the average speed of cars at the network level. On the other hand, by fusing the FCD and AVL data, especially in case of sparse FCD, it is possible to obtain a more representative outcome regarding the performance of multi-modal traffic. 相似文献
20.
Weaving sections, a common design of motorways, require extensive lane‐change manoeuvres. Numerous studies have found that drivers tend to make their lane changes as soon as they enter the weaving section, as the traffic volume increases. Congestion builds up as a result of this high lane‐changing concentration. Importantly, such congestion also limits the use of existing infrastructure, the weaving section downstream. This behaviour thus affects both safety and operational aspects. The potential tool for managing motorways effectively and efficiently is cooperative intelligent transport systems (C‐ITS). This research investigates a lane‐change distribution advisory application based on C‐ITS for weaving vehicles in weaving sections. The objective of this research is to alleviate the lane‐changing concentration problem by coordinating weaving vehicles to ensure that such lane‐changing activities are evenly distributed over the existing weaving length. This is achieved by sending individual messages to drivers based on their location to advise them when to start their lane change. The research applied a microscopic simulation in aimsun to evaluate the proposed strategy's effectiveness in a one‐sided ramp weave. The proposed strategy was evaluated using different weaving advisory proportions, traffic demands and penetration rates. The evaluation revealed that the proposed lane‐changing advisory has the potential to significantly improve delay. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献