首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further improve the utilization rate of railway tracks and reduce train delays, this paper focuses on developing a high-efficiency train routing and timetabling approach for double-track railway corridors in condition that trains are allowable to travel on reverse direction tracks. We first design an improved switchable policy which is rooted in the approaches by Mu and Dessouky (2013), with the analysis of possible delays caused by different path choices. Then, three novel integrated train routing and timetabling approaches are proposed on the basis of a discrete event model and different dispatching rules, including no switchable policy (No-SP), Mu and Dessouky (2013)’s switchable policy (Original-SP) and improved switchable policy (Improved-SP). To demonstrate the performance of the proposed approaches, the heterogeneous trains on Beijing–Shanghai high speed railway are scheduled by aforementioned approaches. The case studies indicate that in comparison to No-SP and Original-SP approaches, respectively, the Improved-SP approach can reduce the total delay of trains up to 44.44% and 73.53% within a short computational time. Moreover, all of the performance criteria of the Improved-SP approach are usually better than those of other two approaches.  相似文献   

2.
This paper considers the train scheduling problem for an urban rail transit network. We propose an event-driven model that involves three types of events, i.e., departure events, arrival events, and passenger arrival rates change events. The routing of the arriving passengers at transfer stations is also included in the train scheduling model. Moreover, the passenger transfer behavior (i.e., walking times and transfer times of passengers) is also taken into account in the model formulation. The resulting optimization problem is a real-valued nonlinear nonconvex problem. Nonlinear programming approaches (e.g., sequential quadratic programming) and evolutionary algorithms (e.g., genetic algorithms) can be used to solve this train scheduling problem. The effectiveness of the event-driven model is evaluated through a case study.  相似文献   

3.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

4.
High-speed railway (HSR) systems have been developing rapidly in China and various other countries throughout the past decade; as a result, the question of how to efficiently operate such large-scale systems is posing a new challenge to the railway industry. A high-quality train timetable should take full advantage of the system’s capacity to meet transportation demands. This paper presents a mathematical model for optimizing a train timetable for an HSR system. We propose an innovative methodology using a column-generation-based heuristic algorithm to simultaneously account for both passenger service demands and train scheduling. First, we transform a mathematical model into a simple linear programming problem using a Lagrangian relaxation method. Second, we search for the optimal solution by updating the restricted master problem (RMP) and the sub-problems in an iterative process using the column-generation-based algorithm. Finally, we consider the Beijing–Shanghai HSR line as a real-world application of the methodology; the results show that the optimization model and algorithm can improve the defined profit function by approximately 30% and increase the line capacity by approximately 27%. This methodology has the potential to improve the service level and capacity of HSR lines with no additional high-cost capital investment (e.g., the addition of new tracks, bridges and tunnels on the mainline and/or at stations).  相似文献   

5.
This paper proposes a mathematical model for the train routing and timetabling problem that allows a train to occasionally switch to the opposite track when it is not occupied, which we define it as switchable scheduling rule. The layouts of stations are taken into account in the proposed mathematical model to avoid head-on and rear-end collisions in stations. In this paper, train timetable could be scheduled by three different scheduling rules, i.e., no switchable scheduling rule (No-SSR) which allows trains switching track neither at stations and segments, incomplete switchable scheduling rule (In-SSR) which allows trains switching track at stations but not at segments, and complete switchable scheduling rule (Co-SSR) which allows trains switching track both at stations and segments. Numerical experiments are carried out on a small-scale railway corridor and a large-scale railway corridor based on Beijing–Shanghai high-speed railway (HSR) corridor respectively. The results of case studies indicate that Co-SSR outperforms the other two scheduling rules. It is also found that the proposed model can improve train operational efficiency.  相似文献   

6.
This paper deals with the real-time problem of scheduling and routing trains in a railway network. In the related literature, this problem is usually solved starting from a subset of routing alternatives and computing the near-optimal solution of the simplified routing problem. We study how to select the best subset of routing alternatives for each train among all possible alternatives. The real-time train routing selection problem is formulated as an integer linear programming formulation and solved via an algorithm inspired by the ant colonies’ behavior. The real-time railway traffic management problem takes as input the best subset of routing alternatives and is solved as a mixed-integer linear program. The proposed methodology is tested on two practical case studies of the French railway infrastructure: the Lille terminal station area and the Rouen line. The computational experiments are based on several practical disturbed scenarios. Our methodology allows the improvement of the state of the art in terms of the minimization of train consecutive delays. The improvement is around 22% for the Rouen instances and around 56% for the Lille instances.  相似文献   

7.
If railway companies ask for station capacity numbers, their underlying question is in fact one about the platformability of extra trains. Train platformability depends not only on the infrastructure, buffer times, and the desired departure and arrival times of the trains, but also on route durations, which depend on train speeds and lengths, as well as on conflicts between routes at any given time. We consider all these factors in this paper. We assume a current train set and a future one, where the second is based on the expected traffic increase through the station considered. The platforming problem is about assigning a platform to each train, together with suitable in- and out-routes. Route choices lead to different route durations and imply different in-route-begin and out-route-end times. Our module platforms the maximum possible weighted sum of trains in the current and future train set. The resulting number of trains can be seen as the realistic capacity consumption of the schedule. Our goal function allows for current trains to be preferably allocated to their current platforms.Our module is able to deal with real stations and train sets in a few seconds and has been fully integrated by Infrabel, the Belgian Infrastructure Management Company, in their application called Ocapi, which is now used to platform existing and projected train sets and to determine the capacity consumption.  相似文献   

8.
This paper focuses on the simultaneous passenger train routing and timetabling problem on the rail network consisting of both unidirectional and bidirectional tracks using an efficient train-based Lagrangian relaxation decomposition. We first build an integer linear programming model with many 0–1 binary and non-negative integer decision variables, after then reformulate it as a train path-choice model for providing an easier train-based Lagrangian relaxation decomposition mechanism based on the construction of space-time discretized network extending from node-cell-based rail network. Moreover, through reformulating safety usage interval restrictions with a smaller number of constraints in this reformulated model, the train-based decomposition needs fewer Lagrangian multipliers to relax these constraints. On the basis of this decomposition, a solving framework including a heuristic algorithm is proposed to simultaneously optimize both the dual and feasible solutions. A set of numerical experiments demonstrate the proposed Lagrangian relaxation decomposition approach has better performances in terms of minimizing both train travel time and computational times.  相似文献   

9.
Train dispatching is vital for the punctuality of train services, which is critical for a train operating company (TOC) to maintain its competitiveness. Due to the introduction of competition in the railway transport market, the issue of discrimination is attracting more and more attention. This paper focuses on delivering non-discriminatory train dispatching solutions while multiple TOCs are competing in a rail transport market, and investigating impacting factors of the inequity of train dispatching solutions. A mixed integer linear programming (MILP) model is first proposed, in which the inequity of competitors (i.e., trains and TOCs) is formalized by a set of constraints. In order to provide a more flexible framework, a model is further reformulated where the inequity of competitors is formalized as the maximum individual deviation of competitors’ delay cost from average delay cost in the objective function. Complex infrastructure capacity constraints are considered and modelled through a big M-based approach. The proposed models are solved by a standard MILP solver. A set of comprehensive experiments is conducted on a real-world dataset adapted from the Dutch railway network to test the efficiency, effectiveness, and applicability of the proposed models, as well as determine the trade-off between train delays and delay equity.  相似文献   

10.
The train operational plan (TOP) plays a crucial role in the efficient and effective operation of an urban rail system. We optimize the train operational plan in a special network layout, an urban rail corridor with one terminal yard, by decomposing it into two sub-problems, i.e., the train departure profile optimization and the rolling stock circulation optimization. The first sub-problem synthetically optimizes frequency setting, timetabling and the rolling stock circulation at the terminal without a yard. The maximum headway function is generated to ensure the service of the train operational plan without considering travel demand, then we present a model to minimize the number of train trips, and design a heuristic algorithm to maximize the train headway. On the basis of a given timetable, the rolling stock circulation optimization only involves the terminal with a yard. We propose a model to minimize the number of trains and yard–station runs, and an algorithm to find the optimal assignment of train-trip pair connections is designed. The computational complexities of the two algorithms are both linear. Finally, a real case study shows that the train operational plan developed by our approach enables a better match of train headway and travel demand, and reduces the operational cost while satisfying the requirement of the level of service.  相似文献   

11.
The train formation plan (TFP) determines the train services and their frequencies and assigns the demands. The TFP models are often formulated as a capacitated service network design problem, and the optimal solution is normally difficult to find. In this paper, a hybrid algorithm of the Simplex method and simulated annealing is proposed for the TFP problem. The basic idea of the proposed algorithm is to use a simulated annealing algorithm to explore the solution space, where the revised Simplex method evaluates, selects, and implements the moves. In the proposed algorithm, the neighborhood structure is based on the pivoting rules of the Simplex method that provides an efficient method to reach the neighbors of the current solution. A state‐of‐the‐art method is applied for parameters tuning by using the design of experiments approach. To evaluate the proposed model and the solution method, 25 test problems have been simulated and solved. The results show the efficiency and the effectiveness of the proposed approach. The proposed approach is implemented to develop the TFP in the Iranian railway as a case study. It is possible to save significant time and cost through solving the TFP problem by using the proposed algorithm and developing the efficient TFP plan in the railway networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper shows how to recover the arrival times of trains from the gate times of metro passengers from Smart Card data. Such technique is essential when a log, the set of records indicating the actual arrival and departure time of each bus or train at each station and also a critical component in reliability analysis of a transportation system, is missing partially or entirely. The procedure reconstructs each train as a sequence of the earliest exit times, called S-epochs, among its alighting passengers at each stations. The procedure first constructs a set of passengers, also known as reference passengers, whose routing choices are easily identifiable. The procedure then computes, from the exit times of the reference passengers, a set of tentative S-epochs based on a detection measure whose validity relies on an extreme-value characteristic of the platform-to-gate movement of alighting passengers. The tentative S-epochs are then finalized to be a true one, or rejected, based on their consistencies with bounds and/or interpolation from prescribed S-epochs of adjacent trains and stations. Tested on 12 daily sets of trains, with varying degrees of missing logs, from three entire metro lines, the method restored the arrival times of 95% of trains within the error of 24 s even when 100% of logs was missing. The mining procedure can also be applied to trains operating under special strategies such as short-turning and skip-stop. The recovered log seems precise enough for the current reliability analysis performed by the city of Seoul.  相似文献   

13.
A multi-objective train scheduling model and solution   总被引:1,自引:0,他引:1  
This paper develops a multi-objective optimization model for the passenger train-scheduling problem on a railroad network which includes single and multiple tracks, as well as multiple platforms with different train capacities. In this study, lowering the fuel consumption cost is the measure of satisfaction of the railway company and shortening the total passenger-time is being regarded as the passenger satisfaction criterion. The solution of the problem consists of two steps. First the Pareto frontier is determined using the -constraint method, and second, based on the obtained Pareto frontier detailed multi-objective optimization is performed using the distance-based method with three types of distances. Numerical examples are given to illustrate the model and solution methodology.  相似文献   

14.
In this paper we present a stochastic model for predicting the propagation of train delays based on Bayesian networks. This method can efficiently represent and compute the complex stochastic inference between random variables. Moreover, it allows updating the probability distributions and reducing the uncertainty of future train delays in real time under the assumption that more information continuously becomes available from the monitoring system. The dynamics of a train delay over time and space is presented as a stochastic process that describes the evolution of the time-dependent random variable. This approach is further extended by modelling the interdependence between trains that share the same infrastructure or have a scheduled passenger transfer. The model is applied on a set of historical traffic realisation data from the part of a busy corridor in Sweden. We present the results and analyse the accuracy of predictions as well as the evolution of probability distributions of event delays over time. The presented method is important for making better predictions for train traffic, that are not only based on static, offline collected data, but are able to positively include the dynamic characteristics of the continuously changing delays.  相似文献   

15.
The train trajectory optimization problem aims at finding the optimal speed profiles and control regimes for a safe, punctual, comfortable, and energy-efficient train operation. This paper studies the train trajectory optimization problem with consideration of general operational constraints as well as signalling constraints. Operational constraints refer to time and speed restrictions from the actual timetable, while signalling constraints refer to the influences of signal aspects and automatic train protection on train operation. A railway timetable provides each train with a train path envelope, which consists of a set of positions on the route with a specified target time and speed point or window. The train trajectory optimization problem is formulated as a multiple-phase optimal control model and solved by a pseudospectral method. This model is able to capture varying gradients and speed limits, as well as time and speed constraints from the train path envelope. Train trajectory calculation methods under delay and no-delay situations are discussed. When the train follows the planned timetable, the train trajectory calculation aims at minimizing energy consumption, whereas in the case of delays the train trajectory is re-calculated to track the possibly adjusted timetable with the aim of minimizing delays as well as energy consumption. Moreover, the train operation could be affected by yellow or red signals, which is taken into account in the train speed regulation. For this purpose, two optimization policies are developed with either limited or full information of the train ahead. A local signal response policy ensures that the train makes correct and quick responses to different signalling aspects, while a global green wave policy aims at avoiding yellow signals and thus proceed with all green signals. The method is applied in a case study of two successive trains running on a corridor with various delays showing the benefit of accurate predictive information of the leading train on energy consumption and train delay of the following train.  相似文献   

16.
The vehicle routing problem (VRP) is a critical and vital problem in logistics for the design of an effective and efficient transportation network, within which the capacitated vehicle routing problem (CVRP) has been widely studied for several decades due to the practical relevance of logistics operation. However, CVRP with the objectives of minimizing the overall traveling distance or the traveling time cannot meet the latest requirements of green logistics, which concern more about the influence on the environment. This paper studies CVRP from an environmental perspective and introduces a new model called environmental vehicle routing problem (EVRP) with the aim of reducing the adverse effect on the environment caused by the routing of vehicles. In this research, the environmental influence is measured through the amount of the emission carbon dioxide, which is a widely acknowledged criteria and accounts for the major influence on environment. A hybrid artificial bee colony algorithm (ABC) is designed to solve the EVRP model, and the performance of the hybrid algorithm is evaluated through comparing with well-known CVRP instances. The computational results from numerical experiments suggest that the hybrid ABC algorithm outperforms the original ABC algorithm by 5% on average. The transformation from CVRP to EVRP can be recognized through the differentiation of their corresponding optimal solutions, which provides practical insights for operation management in green logistics.  相似文献   

17.
We propose machine learning models that capture the relation between passenger train arrival delays and various characteristics of a railway system. Such models can be used at the tactical level to evaluate effects of various changes in a railway system on train delays. We present the first application of support vector regression in the analysis of train delays and compare its performance with the artificial neural networks which have been commonly used for such problems. Statistical comparison of the two models indicates that the support vector regression outperforms the artificial neural networks. Data for this analysis are collected from Serbian Railways and include expert opinions about the influence of infrastructure along different routes on train arrival delays.  相似文献   

18.
A heuristic for the train pathing and timetabling problem   总被引:5,自引:0,他引:5  
In a railroad system, train pathing is concerned with the assignment of trains to links and tracks, and train timetabling allocates time slots to trains. These important tasks were traditionally done manually, but there is an increasing move toward automated software based on mathematical models and algorithms. Most published models in the literature either focus on train timetabling only, or are too complicated to solve when facing large instances. In this paper, we present an optimization heuristic that includes both train pathing and train timetabling, and has the ability to solve real-sized instances. This heuristic allows the operation time of trains to depend on the assigned track, and also lets the minimum headway between the trains to depend on the trains’ relative status. It generates an initial solution with a simple rule, and then uses a four-step process to derive the solution iteratively. Each iteration starts by altering the order the trains travel between stations, then it assigns the services to the tracks in the stations with a binary integer program, determines the order they pass through the stations with a linear program, and uses another linear program to produce a timetable. After these four steps, the heuristic accepts or rejects the new solution according to a Threshold Accepting rule. By decomposing the original complex problem into four parts, and by attacking each part with simpler neighborhood-search processes or mathematical programs, the heuristic is able to solve realistic instances. When tested with two real-world examples, one from a 159.3 km, 29-station railroad that offers 44 daily services, and another from a 345 km, eight-station high-speed rail with 128 services, the heuristic obtained timetables that are at least as good as real schedules.  相似文献   

19.
20.
In this work we propose a mechanism to optimize the capacity of the main corridor within a railway network with a radial-backbone or X-tree structure. The radial-backbone (or X-tree) structure is composed of two types of lines: the primary lines that travel exclusively on the common backbone (main corridor) and radial lines which, starting from the common backbone, branch out to individual locations. We define possible line configurations as binary strings and propose operators on them for their analysis, yielding an effective algorithm for generating an optimal design and train frequencies. We test our algorithm on real data for the high speed line Madrid–Seville. A frequency plan consistent with the optimal capacity is then proposed in order to eliminate the number of transfers between lines as well as to minimize the network fleet size, determining the minimum number of vehicles needed to serve all travel demand at maximum occupancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号