首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
This paper studies the supply variables that influence the destination and route choices of users of a bicycle sharing system in the Chilean city of Santiago. A combined trip demand logit model is developed whose explanatory variables represent attributes relating to the topology of the possible routes and other characteristics such as the presence of bikeways, bus service and controlled intersections. The data for the explanatory variables and system users were collected through field surveys of the routes and interviews conducted at the system stations. The results of the model show that proximity to stops on the Santiago Metro and the existence of bikeways are the main factors influencing destination and route choices. Also indicated by the model estimates are gender differences, a preference for tree-lined routes and an avoidance of routes with bus services. Finally, the outcomes reveal considerable potential for the integration of bicycle sharing systems with Metro transit.  相似文献   

2.
This article presents a route choice model for public transit networks that incorporates variables related to network topology, complementing those found in traditional models based on service levels (travel time, cost, transfers, etc.) and users’ socioeconomic and demographic characteristics (income level, trip purpose, etc.). The topological variables represent concepts such as the directness of the chosen route and user knowledge of the network. For both of these factors, the necessary data is endogenous to the modelling process and can be quantified without the need for information-gathering beyond what is normally required for building route choice models. Other novel variables in the proposed formulation capture notions of user comfort such as vehicle occupancy rates and certain physical characteristics of network stations. We conclude that these new variables significantly improve the explanatory and predictive ability of existing route choice specifications.  相似文献   

3.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

4.

The shared taxi is a special public transport mode, typical of Chilean cities. It operates with cars offering a maximum capacity of four seats, a predefined coverage area and a route that is fixed in principle, but can be adapted to meet passengers’ needs. During a normal day in Santiago, almost 700,000 trips use shared taxis during one of their stages. This represents about 4% of the total trips made in the city, and this modal share increases in zones and periods with low Metro and bus coverage. This study is a first attempt at studying shared taxis as a relevant transport alternative, analysing its main attributes and modelling its demand. With this purpose, after an analysis of the network and its operation, a revealed preference survey (including perceptual indicators) was applied to public transport users in Santiago who had shared taxi as a feasible alternative. Results show a positive evaluation of the mode’s unique attributes, such as the possibility of travelling seated, reducing transfers and alighting at a convenient destination. The subjective valuation of the attributes derived from the models confirm the strong penalty assigned by Chilean users to alternatives implying transfers or increased walking times. The analysis also shows that studying the characteristics of shared taxi users is relevant in a discussion about its regulation and modernization, considering that, while it is desirable to preserve its positive attributes, this should be done in a context of efficient integration with the rest of the transport system.

  相似文献   

5.
Abstract

Many researchers have been attracted by the phenomenon of constant travel time, and the time spent on travel has been an important indicator of understanding travellers’ behaviours. This paper is based on a survey conducted in a university in London which includes both objective and subjective variables in relation to commute time and some demographic characteristics. Two conceptual structural models are examined in order to explore the factors determining travellers’ choices. Results of the analysis reveal some interesting relationships: (1) a positive relationship between age and commute time; (2) females are more likely to read or listen to music during their journeys, and their ideal commute time (ICT) and current commute time (CCT) generally tend to be longer; (3) academic staff tend to have the habit of working during their commute, administrative staff tend to commute longer while students tend to spend a shorter time commuting; (4) normally, a habit while travelling is significantly associated with CCT; those with a habit of reading or working during their commute journey tend to have longer commute times and (5) the relationship between CCT and commuters’ ICT and tolerable commute time is positive; both hypothesised causal relationships are significant so that a loop is formed between subjective and objective variables, and thus a dynamic modelling process could be envisaged as temporal sequences of those variables.  相似文献   

6.

Public transport (PT) providers aim to offer services that meet users’ satisfaction, and for this, they can control some operational service attributes such as frequency, speed, crowdedness and reliability. Understanding how these objective attributes affect user satisfaction is essential to improve it cost-effectively, but these associations have not been examined enough in the PT literature. This study aims to unveil how key transit operational variables actually experienced by users affect their satisfaction. We analysed data derived from a multiannual consumer satisfaction survey for the Santiago de Chile Metro system; between January 2013 and June 2016 (n?=?41,993), where approximately 1000 questionnaires were completed each month. We also gained access to a set of operational variables managed by Metro for the same period, including more than 1.4 million records. With this unique dataset, we first developed a structural equation model (SEM) with users’ perceived attributes, finding that safety, ease of boarding, response to critical incidents (CI), the number and type of CI endured, and information, were the variables that mostly affected satisfaction. We also examined heterogeneity in transit satisfaction with SEM-MIMIC models, by characterising the user population through their trip and socioeconomic characteristics, finding a striking result: that as users age they are more satisfied with the system. Next, we assessed whether including operational service attributes, such as crowding levels, frequency, commercial speed and CI, added predictive power to the proposed model. We found that the number of CI, speed, frequency and crowdedness, plus their variability (measured through the coefficient of variation), affected transit satisfaction at significant levels. Including these objective service attributes provided more explanatory power to the SEM-MIMIC transit satisfaction models. Policy recommendations for improving satisfaction, derived from our results, are: to implement an automatic control system for the number of passengers on Metro platforms (as safety and ease of boarding are critical issues for passengers); and to deploy a comprehensive tactical plan to address CI: determine which happen more often, take actions to minimise them and provide better responsive actions.

  相似文献   

7.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

This paper investigates route choice behaviour on freeways between Taipei and Taichung in Taiwan under the provision of real-time traffic information. Two types of route choice selection rules (the best-route and habitual-route) are analysed using ordered probit models to identify the major influences on freeway travellers’ route choice behaviour. The level of service associated with each route is defined as a generalised cost saving (GCS) and specified non-linearly with a threshold inherent to travellers. The marginal (dis)utility thresholds in the ‘best’ and ‘habitual’ behaviour models are identified through a goodness-of-fit grid. The results confirm that the thresholds for changing the inertia behaviour of drivers should be larger than the ones for choosing the best routes. In addition, the drivers are more likely to choose either the best or the habitual routes once the GCS are greater than the identified threshold values.  相似文献   

9.
This paper explores the accuracy of the transport model forecast of the Gothenburg congestion charges, implemented in 2013. The design of the charging system implies that the path disutility cannot be computed as a sum of link attributes. The route choice model is therefore implemented as a hierarchical algorithm, applying a continuous value of travel time (VTT) distribution. The VTT distribution was estimated from stated choice (SC) data. However, based on experience of impact forecasting with a similar model and of impact outcome of congestion charges in Stockholm, the estimated VTT distribution had to be stretched to the right. We find that the forecast traffic reductions across the cordon and travel time gains were close to those observed in the peak. However, the reduction in traffic across the cordon was underpredicted off-peak. The necessity to make the adjustment indicates that the VTT inferred from SC data does not reveal the travellers’ preferences, or that there are factors determining route choice other than those included in the model: travel distance, travel time and congestion charge.  相似文献   

10.
Sharma  Bibhuti  Hickman  Mark  Nassir  Neema 《Transportation》2019,46(1):217-232

This research aims to understand the park-and-ride (PNR) lot choice behaviour of users i.e., why PNR user choose one PNR lot versus another. Multinomial logit models are developed, the first based on the random utility maximization (RUM) concept where users are assumed to choose alternatives that have maximum utility, and the second based on the random regret minimization (RRM) concept where users are assumed to make decisions such that they minimize the regret in comparison to other foregone alternatives. A PNR trip is completed in two networks, the auto network and the transit network. The travel time of users for both the auto network and the transit network are used to create variables in the model. For the auto network, travel time is obtained using information from the strategic transport network using EMME/4 software, whereas travel time for the transit network is calculated using Google’s general transit feed specification data using a backward time-dependent shortest path algorithm. The involvement of two different networks in a PNR trip causes a trade-off relation within the PNR lot choice mechanism, and it is anticipated that an RRM model that captures this compromise effect may outperform typical RUM models. We use two forms of RRM models; the classical RRM and µRRM. Our results not only confirm a decade-old understanding that the RRM model may be an alternative concept to model transport choices, but also strengthen this understanding by exploring differences between two models in terms of model fit and out-of-sample predictive abilities. Further, our work is one of the few that estimates an RRM model on revealed preference data.

  相似文献   

11.
This article proposes a model for analysing the modal choice of travellers making inter-urban journeys. Discrete choice models with systematic and random tastes variation were applied to find the most relevant variables for encouraging the use of public transport by bus rather than private car. This research follows on from the results of previous user satisfaction studies on inter-urban bus services in the province of Burgos (Spain). Willingness to pay is also estimated for time savings or other improvements in the bus service.The results indicate that, in general, improvements in the journey time or the number of daily journeys are valued less by inter-urban bus users than they are by car or railway users. The type of bus and its characteristics are evaluated as a function of the distance travelled and result in very small values for this variable. Contrary to what is often reported in satisfaction surveys, the journey cost is found to be relevant when choosing which mode of transport to use, but the most important variable is journey time. Little value is placed on the features of the bus, except on long distance journeys.Finally, a methodology differentiating four hierarchical groups is presented for comparing the results of the relevant variables in demand and satisfaction models. Some only improve perception rather than encourage new users, while others increase take-up but do not improve the image of the service.  相似文献   

12.
Abstract

This paper reviews the main studies on transit users’ route choice in the context of transit assignment. The studies are categorized into three groups: static transit assignment, within‐day dynamic transit assignment, and emerging approaches. The motivations and behavioural assumptions of these approaches are re‐examined. The first group includes shortest‐path heuristics in all‐or‐nothing assignment, random utility maximization route‐choice models in stochastic assignment, and user equilibrium based assignment. The second group covers within‐day dynamics in transit users’ route choice, transit network formulations, and dynamic transit assignment. The third group introduces the emerging studies on behavioural complexities, day‐to‐day dynamics, and real‐time dynamics in transit users’ route choice. Future research directions are also discussed.  相似文献   

13.
An analysis of Metro ridership at the station-to-station level in Seoul   总被引:2,自引:0,他引:2  
While most aggregate studies of transit ridership are conducted at either the stop or the route level, the present study focused on factors affecting Metro ridership in the Seoul metropolitan area at the station-to-station level. The station-to-station analysis made it possible to distinguish the effect of origin factors on Metro ridership from that of destination factors and to cut down the errors caused by the aggregation of travel impedance-related variables. After adopting two types of direct-demand patronage forecasting models, the multiplicative model and the Poisson regression model, the former was found to be superior to the latter because it clearly identified the negative influences of competing modes on Metro ridership. Such results are rarely found with aggregate level analyses. Moreover, the importance of built environment in explaining Metro demand was confirmed by separating built environment variables for origin and destination stations and by differentiating ridership by the time of day. For morning peak hours, the population-related variables of the origin stations played a key role in accounting for Metro ridership, while employment-related variables prevailed in destination stations. In evening peak hours, both employment- and population-related variables were significant in accounting for the Metro ridership at the destination station. This showed that a significant number of people in the Seoul metropolitan area appear to take various non-home-based trips after work, which is consistent with the results from direct household travel surveys.  相似文献   

14.
Passengers may make several transfers between different lines to reach their destinations in urban railway transit networks. Coordination of last trains in feeding lines and connecting lines at transfer stations is especially important because it is the last chance for many travellers to transfer. In this paper, a mathematical method is used to reveal the relationships between passenger transfer connection time (PTCT) and passenger transfer waiting time (PTWT). A last-train network transfer model (LNTM) is established to maximize passenger transfer connection headways (PTCH), which reflect last-train connections and transfer waiting time. Additionally, a genetic algorithm (GA) is developed based upon this LNTM model and used to test a numerical example to verify its effectiveness. Finally, the Beijing subway network is taken as a case study. The results of the numerical example show that the model improves five connections and reduces to zero the number of cases when a feeder train arrives within one headway’s time after the connecting train departed.  相似文献   

15.
This paper considers both the access and egress stages as an entire process to analyze the satisfaction levels of commuters with metro commuter journeys. Based on a survey in Nanjing, China, seven intermodal travel groups are employed as targets for this analysis. The groups include Walk–Metro–Walk, Walk–Metro–Bus, Bike–Metro–Walk, Bike–Metro–Bus, Bus–Metro–Walk, Bus–Metro–Bus and Car–Metro–Walk, which are named according to the modes of transportation that are employed for access and egress trips. Binary logit models are developed for each group to identify the main factors of satisfaction level. The results show that access and egress stages serve important but different roles in the seven groups. Facility service qualities in two stages are the primary factors that affect overall satisfaction. The groups with same access or egress modes have significantly different core factors. Access by bike and bike–metro–transit users are concerned with bike parking safety, whereas bike–metro–walk users value parking spaces near metro stations. With two transfers between bus and metro, transit–metro–transit users indicate that the weak point in the access stage is the crowded spaces on buses. However, transit–metro–walk users value bus on-time performance, which is also valued by groups with metro–bus egress transfers. For egress by walking, commuters that use motorized modes for access are concerned with the egress walking environment, whereas users of non-motorized access modes are more concerned with egress walking spaces. The findings of this study are helpful for policy developments than can improve public satisfaction with commutes by urban metro.  相似文献   

16.
Growing concerns regarding urban congestion, and the recent explosion of mobile devices able to provide real-time information to traffic users have motivated increasing reliance on real-time route guidance for the online management of traffic networks. However, while the theory of traffic equilibria is very well-known, fewer results exist on the stability of such equilibria, especially in the context of adaptive routing policy. In this work, we consider the problem of characterizing the stability properties of traffic equilibria in the context of online adaptive route choice induced by GPS-based decision making. We first extend the recent framework of “Markovian Traffic Equilibria” (MTE), in which users update their route choice at each intersection of the road network based on traffic conditions, to the case of non-equilibrium conditions, while preserving consistency with known existence and uniqueness results on MTE. We then exhibit sufficient conditions on the network topology and the latency functions for those MTEs to be stable in the sense of Lyapunov for a single destination problem. For various more restricted classes of network topologies motivated by the observed properties of travel patterns in the Singapore network, under certain assumptions we prove local exponential stability of the MTE, and derive analytical results on the sensitivity of the characteristic time of convergence to network and traffic parameters. The results proposed in this work are illustrated and validated on synthetic toy problems as well as on the Singapore road network with real demand and traffic data.  相似文献   

17.
Foresee traffic conditions and demand is a major issue nowadays that is very often approached using simulation tools. The aim of this work is to propose an innovative strategy to tackle such problem, relying on the presentation and analysis of a behavioural dynamic traffic assignment.The proposal relies on the assumption that travellers take routing policies rather than paths, leading us to introduce the possibility for each simulated agent to apply, in real time, a strategy allowing him to possibly re-route his path depending on the perceived local traffic conditions, jam and/or time already spent in his journey.The re-routing process allows the agents to directly react to any change in the road network. For the sake of simplicity, the agents’ strategy is modelled with a simple neural network whose parameters are determined during a preliminary training stage. The inputs of such neural network read the local information about the route network and the output gives the action to undertake: stay on the same path or modify it. As the agents use only local information, the overall network topology does not really matter, thus the strategy is able to cope with large and not previously explored networks.Numerical experiments are performed on various scenarios containing different proportions of trained strategic agents, agents with random strategies and non strategic agents, to test the robustness and adaptability to new environments and varying network conditions. The methodology is also compared against existing approaches and real world data. The outcome of the experiments suggest that this work-in-progress already produces encouraging results in terms of accuracy and computational efficiency. This indicates that the proposed approach has the potential to provide better tools to investigate and forecast drivers’ choice behaviours. Eventually these tools can improve the delivery and efficiency of traffic information to the drivers.  相似文献   

18.
Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers’ decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.  相似文献   

19.

A large variety of factors influence the route choice decisions of road users, and modelers consider these factors within the perceived utility that road users are assumed to maximize. However, this perceived utility may be different even for the same origin–destination pair and this leads road users to choose different routes for different trips. In this study, we focus on this particular phenomenon of route switching behavior by estimating discrete choice models with the aim of understanding the key factors at its foundation. The estimated route choice models account for route characteristics, socio-economic information, activity based data, inertial mechanism and learning effects, and they are applied to revealed preference data consisting of 677 actual day by day route choices (referred to 77 road users) collected by GPS in Cagliari (Italy). Route switching models were estimated with both fixed and random coefficient models. The model estimation results show that the variables referred to habit and learning have an important relevance on explaining the route switching phenomenon. Specifically, the higher is the travel habit, the less is the propensity of the road users to switch their route. Moreover, the learning effect shows that the accumulation of past experiences has more influence on the choice than the most recent ones.

  相似文献   

20.
This paper studies a mean-standard deviation shortest path model, also called travel time budget (TTB) model. A route’s TTB is defined as this route’s mean travel time plus a travel time margin, which is the route travel time’s standard deviation multiplied with a factor. The TTB model violates the Bellman’s Principle of Optimality (BPO), making it difficult to solve it in any large stochastic and time-dependent network. Moreover, it is found that if path travel time distributions are skewed, the conventional TTB model cannot reflect travelers’ heterogeneous risk-taking behavior in route choice. This paper proposes to use the upper or lower semi-standard deviation to replace the standard deviation in the conventional TTB model (the new models are called derived TTB models), because these derived TTB models can well capture such heterogeneous risk-taking behavior when the path travel time distributions are skewed. More importantly, this paper shows that the optimal solutions of these two derived TTB models must be non-dominated paths under some specific stochastic dominance (SD) rules. These finding opens the door to solve these derived TTB models efficiently in large stochastic and time-dependent networks. Numerical examples are presented to illustrate these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号