首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水滴型回转体带尾导管的水动力特性研究   总被引:2,自引:0,他引:2  
过去在鱼雷型回转体上加尾导管的操纵性模型试验研究表明,尾导管使回转体的静稳定性显著降低,而DARPA的SUBOFF模型试验结果却显示,潜艇类回转体(主体)加尾导管(尾附件)对回转体的静稳定性没有不利的影响,而且还提高了回转体的运动稳定性。本文通过模型试验对水滴型回转体加尾导管的静稳定性以及导管的水动力特性进行了精细的研究,同时,结合CFD工具对回转体绕流进行的机理分析,得出了尾导管对主体静稳定性影响的基本结论:在有攻角的情况下,主体近表面的绕流特性主要由势伴流控制,当导管尺寸相对比较小时,尾导管的实际有效来流攻角与名义来流攻角符号相反,而产生不稳定的力矩,导致主体静稳定性反而下降。  相似文献   

2.
船舶大尺度效应造成船体变形大,使船舶轴系和船体之间相互耦合、相互影响问题十分突出。为此,建立了具有非线性油膜力作用的尾轴-油膜-艉部结构耦合系统动力学模型,推导了系统的动力学微分方程并对方程进行求解,分析了不同转速下尾轴的非线性动力学特征,总结了艉部结构系统的固有频率,参振质量,支承刚度,连接刚度对尾轴振动特性的影响。结果表明:考虑艉部结构的影响之后,尾轴-艉部结构耦合系统的振动特性发生了较大的改变,耦合程度受艉部结构固有频率影响较大,尾轴最大振幅随艉部结构参振质量,支承刚度的变化而发生改变。  相似文献   

3.
刘长卿  车驰东  闫菲 《船舶力学》2016,20(4):478-486
为了提高船舶尾部模态计算的精度,文章提出了一种尾部详细结构与船体骨架结合的简化有限元模型,应用该模型对某全回转推进船舶尾部模态进行了计算,并将其结果与另外两种传统简化模型(即尾部三维模型与尾部+一维梁混合模型)的计算结果进行了比较。研究发现改进模型与传统模型在尾部局部模态计算中没有明显差别,但对整体模态而言其差异随频率增大而增大。为了进一步验证模型的有效性,在航行过程中对该船舶振动情况进行了测试,并利用运行模态分析法识别尾部整体模态。通过识别结果与计算结果的比较可见,三种模型在基频(1阶弯曲)计算时误差均很小,但是在高阶固有频率计算中改进的模型误差明显小于另两种模型。  相似文献   

4.
Using a time domain acoustic analogy, we develop a method to predict the sound field and hull pressure fluctuation generated by unsteady sheet cavitation on marine propellers. Formulation 1A of Farassat is introduced to enhance theoretical understanding of this work, and it is applied to modeling the scattered sound field created by the fuselage boundary. To express the direct sound field resulting from sheet cavitation, a new solution is studied which considers the Doppler effect and also separately expresses the near and far fields. A small cube model is used to verify the method. Computed acoustic field pressures around the cube are compared with the boundary element method, and the numerical results show good agreement. Finally, the pressure fluctuation on a ship stern model is calculated.  相似文献   

5.
This paper presents a calculation method for the pressure fluctuation induced by a cavitating propeller. This method consists of two steps: the first step is the calculation of propeller sheet cavitation, and the second step is the calculation of pressure fluctuation on the ship stern. It is for practicality that we divide the method into two steps but do not calculate these steps simultaneously. This method is based on a simple surface panel method “SQCM” which satisfies the Kutta condition easily. The SQCM consists of Hess and Smith type source panels on the propeller or cavity surface and discrete vortices on the camber surface according to Lan’s QCM (quasi-continuous vortex lattice method). In the first step, the cavity shape is solved by the boundary condition based on the free streamline theory. In order to get the accurate cavity shape near the tip of the propeller blade, the cross flow component is taken into consideration on the boundary condition. In the second step, we calculate the cavitating propeller and the hull surface flow simultaneously so as to calculate the pressure fluctuation including the interaction between the propeller and the hull. At that time, the cavity shape is changed at each time step using the calculated cavity shape gotten by the first step. Qualitative agreements are obtained between the calculated results and the experimental data regarding cavity shape, cavity volume and low order frequency components of the pressure fluctuation induced by the cavitating propeller.  相似文献   

6.
在40 000 dwt灵便型散货船设计建造过程中,为了控制船体出现的有害振动,对船体总体振动、上层建筑总体振动及船体艉部局部结构进行了振动预报分析.对船体总体振动和上层建筑总体振动进行分析,避免与主机和螺旋桨激励发生共振;对于船舶艉部结构,重点关注上层建筑各层甲板工作和生活等重要区域的振动情况,采用结构有限元法分析各层甲板的振动特性,设计时通过调整局部结构刚度并保证一定频率储备来避免共振,为船体结构减振设计提供依据.本文给出了设计阶段船舶总体、上层建筑总体及局部结构振动计算分析方法和过程,可对船舶设计者提供有益的参考.  相似文献   

7.
本文采用三维时域非线性水弹性方法分析了一艘6750箱集装箱船的水弹性响应以及运动和垂向弯矩特征。通过考虑入射波力、静水恢复力、砰击效应的非线性,研究了在恶劣海况下船体的非线性运动和垂向弯矩响应,同时分析了波激振动及颤振对垂向弯矩的影响。数值计算结果表明:(1)非线性入射波力对运动的影响较小,但是对垂向弯矩的影响较大,使得其有明显的倍频成分,同时中垂弯矩显著大于中拱弯矩。另外,非线性入射波力也引起了明显的非线性波激振动;(2)非线性静水恢复力对运动和载荷的影响均较大,但是没有引起明显的非线性响应。非线性计算的垂荡响应小于线性结果,而纵摇和垂向弯矩响应大于线性结果;(3)砰击效应对运动的影响较小,但对垂向弯矩的影响较大,砰击效应引起了显著的船体弹性高频振动,增大了载荷幅值,但是其引起的合成中垂和中拱幅值相差不大;(4)非线性水动力的作用主要引起垂向弯矩的倍频响应,包括倍频可能引起的二节点垂向弯矩弹性共振,而砰击效应主要引起船体二节点垂向弯矩共振;(5)本文的非线性水弹性响应计算结果与Kim给出的数值计算结果吻合很好。  相似文献   

8.
高压逃生艇是饱和潜水系统中为潜水员配备的专用高气压紧急撤离设备,相比常压下的全封闭救生艇,具有大吃水、高重心和对乘坐舒适性的要求较高等特征。基于三维势流理论计算分析高压逃生艇的运动响应,在此基础上分析乘员晕船问题,得到艇体运动和艇员晕船率与航速和波浪条件之间的影响关系。研究发现:艇体垂荡、横摇和纵摇并不总是随航速的增加而加剧;艇体横摇和纵摇的峰值对应的遭遇周期分别为9 s和3 s;波浪从艇尾入射时,艇体的垂荡和纵摇相比波浪从艇首入射时更剧烈;艇上乘员的晕船率与波浪条件和航速相关,艇尾处的乘员晕船率最高。  相似文献   

9.
基于潜艇模型尾流湍流强度和耗散率的CFD模拟   总被引:1,自引:0,他引:1  
优良的隐身性能使得潜艇具有强大的突防能力,因此,控制潜艇尾流信号特征对于提高潜艇隐身性能意义重大,这些信号特征主要包括尾部湍流强度、湍动能、湍流耗散率等。同时,优良的艇型对于抑制尾流信号特征、提高潜艇快速性和隐身性也具有重要意义。基于此,采用RANS方法计算SUBOFF潜艇主艇体艇型及6种改良艇型的艇体粘性绕流,将CFD方法用于分析艇体半径、艇艏长度、艇艉长度等参数对潜艇尾流信号特征的影响。计算结果显示:在SUBOFF潜艇主艇体艇型及其6种改良艇型的尾流场中,增加艇体半径有利于抑制远尾流场湍流信号特征,在近场则不利;增加艇艏长度能降低近尾流场湍流信号特征,在远场影响较小;增加艇艉长度在近、远尾流场均有利于降低其信号特征。  相似文献   

10.
[Objective]To simplify the ship modeling process and improve modeling efficiency, this paper proposes a method for rapidly implementing hull model creation based on hull line drawing.[Methods]Using the CATIA platform, this method adopts the component application architecture (CAA) development tool for secondary development. First, by reading the geometry elements and label information of the hull lines in a drawing, the transformation of the offset points from 2D to 3D is realized. On this basis, the creation of the hull lines, stern and bow is completed, and a 3D wireframe model obtained. Finally, the hull 3D modeling is completed in conjunction with the CATIA native surface creation command. The stability and reliability verification of the developed type value extraction and bow generation program is then carried out via application analysis.[Results]The results show that the compiled program can realize the automatic creation of offset points, transverse lines, waterlines, profile lines and other boundary lines except the top line of the wall, and the centerline and tangent lines created by the bow generator are easily modified and simple for users to operate. [Conclusions]The verification results show that the method of a creating hull model using "Generative Shape Design" and "Drafting" with the hull line drawing as the data input is stable, reliable and able to realize rapid hull modeling, giving it certain practical value. © The Author(s) 2022.  相似文献   

11.
In this paper, we investigated the effect of sloshing on the sway motions of two-dimensional rectangular cylinders in regular waves, bearing in mind possible applications for LNG-FPSO and LNG-FSRU. First, we carried out experiments for two models with different drafts, or the same draft but different filling ratios, in which the models were firmly connected to each other. The sway motion was measured with a noncontact video camera. This is an extension of Rognebakke and Faltinsen’s work for a single model (J Ship Res 47(3):208–221, 2003). It was found that the sway motion became small when the incident wave frequency was close to the lowest natural frequency of each model. The sway motion greatly increased when the wave frequency was higher than this frequency. The measured data were compared with numerical results obtained by a single-dominant multi-modal method; relatively good agreement was noted. However, the numerical results deviated from the experimental results near the lowest natural frequency of the smaller model, which was believed to be due to overturning waves, as observed during the experiment. Since this is out of the valid range for the single-dominant multi-modal method, other, more appropriate, methods such as the multi-dominant modal method must be applied instead.  相似文献   

12.
 A nonlinear time-domain procedure is presented which is used to calculate the vertical responses of a container ship advancing in head waves. The method assumes linear radiation forces represented by time convolution of memory functions, infinite frequency added masses, and radiation restoring coefficients. The nonlinear hydrostatic restoring and Froude–Krilov forces are computed exactly over the instantaneous wetted surface of the ship's hull. Forces due to green water on deck are calculated using the momentum method. Nonlinear effects are identified on different vertical ship responses, namely on the heave and pitch motions, the vertical accelerations, and the vertical bending moment. These non-linear effects are expressed by the variation of the transfer function with the wave amplitude, the higher-order harmonics of the time signals, the offset of the time series, and the asymmetry of the peaks. The numerical results and the quantified nonlinear effects are compared with experimental results showing an ability to reproduce the main nonlinear effects. Received: December 17, 2001 / Accepted: January 31, 2002  相似文献   

13.
22 000m3液化气船整船和舱段三维有限元强度分析   总被引:3,自引:0,他引:3  
对22000m^3液化气船进行了整船和舱段三有限元强度计算分析,建立了整船和船体主舱段的三维有限元结构模型。并通过节点力的自动加载技术和惯性平衡处理技术建立有限元模型的节点载荷,在中拱和中垂弯矩作用下,计算出本在压载和满载工况下的船体应力和变形,是后通过对本舱舱段的边界处理技术,计算出受船体总强度的船体舱段局部强度,对船体强度出判断,为改进船体结构设计提供依据。  相似文献   

14.
内倾船型的非线性横摇仿真分析   总被引:1,自引:0,他引:1  
为解决内倾船型的非线性横摇工程分析问题,以内倾船型为对象,基于横摇、纵摇和升沉相互独立的假设,以线性耐波性计算软件预报的响应函数为基础,开发能计入船舶横倾过程中复原力臂的非线性因素对耐波性影响的预报软件,该软件可用于确定不同船型方案的非线性横摇时历曲线.采用该软件完成内倾船型与常规船型之间非线性横摇的差异对比,提出内倾船型在设计中需注意的地方:在设计过程中宜综合考虑内倾幅度与运动之间的影响后再确定内倾程度;采取措施减少内倾船型的纵摇幅值可在一定程度上减少内倾船型的横摇.  相似文献   

15.
The inception of porpoising is theoretically predicted for planing vessels. Two different approaches are presented. First, a linear stability analysis is applied to find the porpoising limits while the hydrodynamic coefficients, i.e. added mass and damping coefficients, are determined by either a simplified method or a numerical method. Another approach is to seek the porpoising limits by performing nonlinear time domain simulations. Either the simplified method or the numerical method is used in the simulations. In the numerical method, a 2D+t theory together with a boundary element method is employed. The trim angle limits for porpoising are determined by changing the longitudinal position of the centre of gravity (COG) of the vessel and keeping the forward speed constant. The predicted porpoising limits are compared with Day and Haag’s (Planing boat porpoising, Thesis, Webb Institute of Naval Architecture, 1952) experimental results. The influences of parameters such as the load coefficient, the vertical position of COG and the radius of gyration of the ship are investigated by varying those parameters in the linear stability analysis. In the nonlinear time-domain simulations, by trying different longitudinal position of COG, one can find the critical trim angle when the porpoising commences. The obtained trim limits agree generally with those predicted by the linear stability analysis. Bounded oscillations for the unstable cases near the critical trim angle can be seen in the time-domain simulations due to the nonlinear effects.  相似文献   

16.
An efficient method for calculation of the slamming pressures on ship hulls in irregular waves is presented and validated for a 290-m cruise ship. Nonlinear strip theory was used to calculate the ship–wave relative motions. The relative vertical and roll velocities for a slamming event were input to the slamming calculation program, which used a two-dimensional boundary element method (BEM) based on the generalized 2D Wagner formulation presented by Zhao et al. To improve the calculation efficiency, the method was divided into two separate steps. In the first step, the velocity potentials were calculated for unit relative velocities between the section and the water. In the next step, these precalculated velocity potentials were used together with the real relative velocities experienced in a seaway to calculate the slamming pressure and total slamming force on the section. This saved considerable computer time for slamming calculations in irregular waves, without significant loss of accuracy. The calculated slamming pressures on the bow flare of the cruise ship agreed quite well with the measured values, at least for time windows in which the calculated and experimental ship motions agreed well. A simplified method for calculation of the instantaneous peak pressure on each ship section in irregular waves is also presented. The method was used to identify slamming events to be analyzed with the more refined 2D BEM method, but comparisons with measured values indicate that the method may also be used for a quick quantitative assessment of the maximum slamming pressures.  相似文献   

17.
为研究遭遇频率散射现象对船舶垂荡与纵摇耦合运动所造成的影响,以某船为研究对象,假设船舶在顶浪航行,通过船舶纵向速度振荡产生频率散射。基于弗汝德—克雷洛夫假定,推导并得到了垂荡与纵摇耦合运动响应方程。采用切片法计算了耦合运动方程中的水动力系数。通过理论求解方法验证了数值求解耦合运动方程的准确性。同时,还分析了散射强度和散射频率单独对耦合运动的影响,以及两者对耦合运动的综合影响。结果表明,增大散射强度和散射频率可以减弱垂荡和纵摇耦合运动及其剧烈程度。  相似文献   

18.
The hydrodynamic analysis of a new semi-small waterplane area twin hull(SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stern; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.  相似文献   

19.
The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stern; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.  相似文献   

20.
In this paper, the influence of heave and pitch motions on green water impact on the deck is numerically investigated. The vessel motions are determined using a potential theory based method and provided as input to finite volume based CFD computations of green water phenomenon. A dynamic mesh approach is adopted to determine instantaneous body positioning in the fluid domain.Detailed validation studies with published experimental results for 2D and 3D fixed vessel cases are initially performed to validate the present numerical approach before studying the moving vessel problem. The results show that inclusion of heave and pitch motion changes the disturbed wave field near the bow which influences the free surface as well as the impact loading due to green water. The effect of wave steepness on green water impact is also investigated and it is seen that the present numerical method is capable of capturing green water load. It is observed that the effects of vessel motions on green water load are not negligible and one should consider this effect too. The incorporation of vessel motions in the vertical plane affects the green water loading on the deck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号