首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a pressure-model-based coordinated control method of a variable geometry turbine (VGT) and dual-loop exhaust gas recirculation (EGR) in a diesel engine air-path system. Conventionally, air fraction or burnt gas fraction states are controlled for the control of dual-loop EGR systems, but fraction control is not practical since sensors for fractions are not available on production engines. In fact, there is still great controversy over how best to select control outputs for dual-loop EGR systems. In this paper, pressure and mass flow states are chosen as control outputs without fraction states considering the availability and reliability of sensors. A coordinated controller based on the simple control-oriented model is designed with practical aspects, which is applicable for simultaneous operations of high pressure (HP) EGR, low pressure (LP) EGR, and VGT. In addition, the controller adopts the method of input-output linearization using back-stepping to solve the chronic problems of conventional pressure-based controllers such as coupling effects between operations of HP EGR, and VGT. The control performance is verified by simulation based on the proven GT-POWER model of a heavy-duty 6000cc diesel engine air-path.  相似文献   

2.
涡轮增压柴油机废气再循环系统的发展   总被引:10,自引:3,他引:10  
概述了世界各国涡轮增压柴油机运用废气再循环 (EGR)技术降低排放的发展状况 ,介绍并比较了内部EGR系统、在进排气管装有节流阀的EGR系统、对废气加压的EGR系统、装文曲利管的EGR系统、利用进排气管的压力波动的EGR系统以及有变截面涡轮等典型的废气再循环系统。指出应针对不同的排放法规采取相应的EGR措施。  相似文献   

3.
The modern diesel engines equip the exhaust gas recirculation (EGR) system to suppress the NOx emissions. In addition, the variable geometric turbocharger (VGT) system is installed to improve the drivability and fuel efficiency. These EGR and VGT systems have cross-coupled behavior because they interact with the intake and the exhaust manifolds. Furthermore, the turbocharger time delay, gas flow dynamics through EGR pipe cause the nonlinearity characteristics. These nonlinear multi-input-multi-output characteristics cause the degradation of control accuracy, especially during the transient condition. In order to improve the control accuracy, this study proposes an iterative learning control (ILC) algorithm for feedforward controller of EGR and VGT systems. The feedforward controller obtains the values about EGR and VGT actuators using the previous control results in predefined transient states. The ILC algorithm consists of a PD-type learning function and a low-pass filter. The control gains of learning function are determined to guarantee the convergence of learning results. In addition, the low-pass filter is designed for robustness against plant disturbance. The proposed control algorithm was validated by engine experiment which repeated predefined transient states. The error was reduced by 15 % according to the gain. As a result, the proposed algorithm is affordable for improving the transient control performance.  相似文献   

4.
-Recently, regulation of NOx and PM emission in diesel engines has become stricter and the EGR system has been expanded into a dual loop EGR system to increase EGR rate as well as to utilize exhaust gas strategically. In terms of engine combustion characteristics, burnt gas fraction is becoming an important factor of solving the NOx and PM emission reduction problem more efficiently but conventional controller focused only pressure and air flow rate targets. Unlike the previous studies, this paper describes a model based burnt gas fraction control structure for a diesel engine with a dual loop EGR and a turbocharger. Feedforward control inputs based on burnt gas fraction states aids in the precise control of diesel engines, especially in transient states by considering coupled behavior within the system. For the controller validation, a control oriented reduced order model of a diesel engine air management system is established to simplify the control input computation and its stability is proved by analysing the internal dynamics stability. Then, a sliding mode controller is designed and controller robustness at certain operating points is validated using an HiLS bench.  相似文献   

5.
Gaussian Process Regression (GPR) provides emerging modeling opportunities for diesel engine control. Recent serial production hardwares increase online calculation capabilities of the engine control units. This paper presents a GPR modeling for feedforward part of the diesel engine airpath controller. A variable geotmetry turbine (VGT) and an exhaust gas recirculation (EGR) valve outer loop controllers are developed. The GPR feedforward models are trained with a series of mapping data with physically related inputs instead of speed and torque utilized in conventional control schemes. A physical model-free and calibratable controller structure is proposed for hardware flexibility. Furthermore, a discrete time sliding mode controller (SMC) is utilized as a feedback controller. Feedforward modeling and the subsequent airpath controller (SMC+GPR) are implemented on the physical diesel engine model and the performance of the proposed controller is compared with a conventional PID controller with table based feedforward.  相似文献   

6.
In accordance with the development of hardware configurations in diesel engines, research on model-based control for these systems has been conducted for years. To control the air management system of a diesel engine, the exhaust manifold pressure should be selected as one of the control targets due to its internal dynamic stability and its physical importance in model-based control. However, it is difficult to measure exhaust pressure using sensors due to gas flow oscillation in the exhaust manifold in a reciprocated diesel engine. Moreover, the sensor is too costly to be equipped on production engines. Hence, the estimation strategies for exhaust manifold pressure have been regarded as a primary issue in diesel engine air management control. This paper proposes a new estimation method for determining the exhaust manifold pressure based on compressor power dynamics. With its simple and robust structure, this estimation leads to improved control performance compared with that of general observers. To compensate for the compressor efficiency error that varies with turbine speed, some correction maps are adopted in the compressor power equation. To verify the control system performance with the new estimator, a HiLS (hardware in the loop simulation) of the NRTC mode is performed. Experimental verification is also conducted using a test bench for the C1-08 mode.  相似文献   

7.
胡明江  刘健 《车用发动机》2012,(1):23-26,35
基于高阶滑模混沌控制的快速稳定和高效鲁棒特点,建立了柴油机EGR系统动态数学模型;设计了柴油机EGR系统的误差评估滑模面、滑模控制率与混沌控制器;针对EGR阀动态控制规律与响应迟滞机理,制订了柴油机EGR阀的控制、修正与优化策略。利用Control Core软件,对EGR阀的响应特性、占空比和EGR率进行了仿真,实现了高阶滑模混沌控制器对EGR系统精确修正、优化与控制。依据柴油机瞬态测试循环法规,进行了增压柴油机EGR系统的动态响应特性和排放测试等试验。试验结果表明,该高阶滑模混沌控制器性能可靠、处理能力强、控制精度高,满足柴油机EGR系统的控制要求。  相似文献   

8.
Fuel injection limitation algorithms are widely used to reduce particulate matter (PM) emissions under transient states in diesel engines. However, the limited injection quantity leads to a decrease in the engine torque response under transient states. To overcome this issue, this study proposes an adaptation strategy for exhaust gas recirculation (EGR) and common rail pressure combined with a fuel injection limitation algorithm. The proposed control algorithm consists of three parts: fuel injection limitation, EGR adaptation, and rail pressure adaptation. The fuel injection quantity is limited by adjusting the exhaust burned gas rate, which is predicted based on various intake air states like air mass flow and EGR mass flow. The control algorithm for EGR and rail pressure was designed to manipulate the set-points of the EGR and rail pressure when the fuel injection limitation is activated. The EGR controller decreases the EGR gas flow rate to rapidly supply fresh air under transient states. The rail pressure controller increases the rail pressure set-point to generate a well-mixed air-fuel mixture, resulting in an enhancement in engine torque under transient states. The proposed adaptation strategy was validated through engine experiments. These experiments showed that PM emissions were reduced by up to 11.2 %, and the engine torque was enhanced by 5.4 % under transient states compared to the injection limitation strategy without adaptation.  相似文献   

9.
This paper presents a model-based gain scheduling algorithm of a PI-based EGR controller for light-duty diesel engines. In order to capture nonlinear characteristic of the EGR system, we have proposed a new scheduling variable to illustrate the static-gain of the plant model as a linear function. The proposed scheduling variable is composed of the air-tofuel ratio of the exhaust gas and the pressure ratio between the exhaust and intake manifolds. Using the scheduling variable, a static-gain model achieved 0.94 of the R-squared value with 810 of steady-state measurements which include key engine operating conditions. Based on the model of the static-gain parameter, the gains of the PI controller are decided by Skogestad internal model control (SIMC) tuning rule in real-time. Through various scenarios of engine experiments, the proposed gain scheduling algorithm represented that the PI gains were successfully adapted according to the changes of the engine operating conditions.  相似文献   

10.
Exhaust gas recirculation (EGR) is an emission control technology that allows for a significant reduction in NOx emissions from light- and heavy-duty diesel engines. The primary effects of EGR are a lower flame temperature and a lower oxygen concentration of the working fluid in the combustion chamber. A high pressure loop (HPL) EGR is characterized by a fast response, especially at lower speeds, but is only applicable if the turbine upstream pressure is sufficiently higher than the boost pressure. On the contrary, for the low pressure loop (LPL) EGR, a positive differential pressure between the turbine outlet and the compressor inlet is generally available. However, a LPL EGR is characterized by a slow response, especially at low and moderate speeds. In this study, of the future types of EGR systems, the dual-loop EGR system (which has the combined features of the high-pressure loop EGR and the low-pressure loop EGR) was developed and was optimized under five selected operating conditions using a commercial engine simulation program (GT-POWER) and the DOE method. Finally, significant improvements in the engine exhaust emissions and performance were obtained by controlling several major variables.  相似文献   

11.
基于柴油机VGT-EGR系统的控制原理,提出了由电子节气门(ETC)—可变废气控制系统(VEC)联合控制替代VGT单独控制并结合EGR系统进一步降低柴油机排放的方案,建立了能够模拟多缸单体泵柴油机运行并通过芯片内部程序对其执行器进行控制的在环仿真试验平台,制取了不同工况下的循环油量MAP图,研究并制订了ETC,VEC和EGR系统的控制策略,并通过在环仿真试验验证了控制策略的可行性。  相似文献   

12.
EGR技术能有效降低机内NOx排放,EGR率的提升是EGR技术关键之一。通过对某柴油机六缸高压EGR系统进行改进,提出高压加低压EGR系统这一新式布置方案,并利用AVL boost软件进行仿真计算。结果表明,高低压EGR系统具有提升EGR率的潜力。  相似文献   

13.
近年来,随着人们对环境保护的日趋重视,世界各国对内燃机废气排放的要求变得越来越严格,轻型柴油车开始实施国Iv标准。目前由于机内排放控制并不能完全起到净化效果,因此对已排出燃烧室但尚未排到大气中的废气进行处理,采取机外控制技术显得很有必要。PM和NOx是柴油机主要排放污染物,如何同时降低这两种尾气组成,达到国Ⅳ排放水平,是当今世界柴油机技术的难点和研究热点。本文介绍目前国内满足柴油机国IV排放标准的SCR和EGRDPF/DOC两种主流技术路线。通过对比分析两种系统的原理和优缺点得出适合国内发展的路线,并浅谈未来柴油机排放控制的发展方向。  相似文献   

14.
应用自行开发的柴油机瞬态测试系统和电控EGR系统进行了EGR瞬态响应特性研究。结果表明:瞬态工况下由于EGR压差的增加和进气量的减小造成EGR率大幅度超调,增加幅值随瞬变率增加而增加;EGR本身会造成柴油机排气烟度增加,瞬态工况下EGR率的超调更加剧了这种恶化;与稳态工况相比,1600 r/min、5 s增负荷工况EGR率最大超调幅度达到43%,排气烟度增加6倍;2000 r/min增负荷工况EGR瞬态响应特性具有大致相同的规律。在发动机瞬变过程中需要制定相应的EGR瞬态控制策略,以降低瞬态排气烟度。  相似文献   

15.
In this study, NOx conversion characteristics of a urea selective catalytic reduction (SCR) system equipped on a heavy-duty diesel engine were evaluated through engine dynamometer bench tests over a scheduled world harmonized transient cycle (WHTC). Also, based on transient SCR simulations, the thermal management strategy to improve SCR NOx conversion efficiency was investigated. As a result, it was found that a selective increase in exhaust temperature at low temperature period would be a useful measure to increase SCR efficiency on WHTC mode. From the baseline SCR efficiency of around 98 % on WHTC mode, the current simulation results have shown that around 99 % level of SCR efficiency would be achievable by increasing exhaust temperatures with modifying diesel exhaust fluid (DEF) dosage. Another valuable contribution of this study is that the design guidelines for controlling exhaust temperature and DEF injection to obtain a target NOx conversion efficiency are presented for SCR systems of heavy-duty diesel engines on transient operating conditions.  相似文献   

16.
以4100柴油发动机为研究对象,用fire软件模拟分析不同EGR对高密度一低温柴油机燃烧和性能的影响。结果表明,应用EGR能有效降低NOx的排放,但同时发动机的烟度排放会有一定幅度的上升:EGR率的增加会给柴油机的动力性、燃油消耗率、烟度的排放带来不同程度的负面影响,使柴油机的最大爆发压力及放热率峰值下降。  相似文献   

17.
Extensive usage of automobiles has certain disadvantages and one of them is its negative effect on environment. Carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), sulphur dioxide (SO2) and particulate matter (PM) come out as harmful products during incomplete combustion from internal combustion (IC) engines. As these substances affect human health, regulatory bodies impose increasingly stringent restrictions on the level of emissions coming out from IC engines. This trend suggests the urgent need for the investigation of all aspects relevant to emissions. It is required to modify existing engine technologies and to develop a better after-treatment system to achieve the upcoming emission norms. Diesel engines are generally preferred over gasoline engines due to their undisputed benefit of fuel economy and higher torque output. However, diesel engines produce higher emissions, particularly NOx and PM. Aftertreatment systems are costly and occupy more space, hence, in-cylinder solutions are preferred in reducing emissions. Exhaust gas recirculation (EGR) technology has been utilized previously to reduce NOx. Though it is quite successful for small engines, problem persists with large bore engines and with high rate of EGR. EGR helps in reducing NOx, but increases particulate emissions and fuel consumption. Many in-cylinder solutions such as lower compression ratios, modified injection characteristics, improved air intake system etc. are required along with EGR to accomplish the future emission norms. Modern combustion techniques such as low temperature combustion (LTC), homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI) etc. would be helpful for reducing the exhaust emissions and improving the engine performance. However, controlling of autoignition timing and achieving wider operating range are the major challenges with these techniques. A comprehensive review of diesel engine performance and emission characteristics is given in this paper.  相似文献   

18.
内外EGR和喷油压力对柴油机低温燃烧的影响   总被引:1,自引:0,他引:1  
在1台装有电液可变气门的单缸柴油机上,通过改变内外EGR策略和喷油压力,对柴油机小负荷工况下低温燃烧的燃烧特性和排放特性进行了试验研究。内部EGR通过排气门两次开启实现,发动机转速和喷油量分别固定为1 500r/min和20mg/cycle。研究结果表明,通过高EGR率控制可以实现超低NOx排放,其中采用高喷油压力可以降低内部EGR的炭烟排放,而采用低喷油压力可以降低外部中冷EGR的HC和CO排放。在内外EGR耦合控制策略中,提高内部EGR比例可以降低HC和CO排放,但改善效果逐渐减弱,同时为了抑制炭烟排放,需要结合更高喷油压力,而提高外部中冷EGR比例可以获得较高热效率。  相似文献   

19.
EGR对车用柴油机性能影响的试验研究   总被引:2,自引:0,他引:2  
结合某废气涡轮增压和高压共轨小型4缸柴油机国Ⅳ排放达标工作,进行了计算机在线实时控制EGR对柴油机性能影响的试验研究,通过试验分析了EGR对NOx、烟度、排气温度、燃油消耗率的影响规律,并对EGR率与喷油提前角的匹配作了进一步的研究。结果表明,为降低柴油机NOx排放,不同工况应采取不同的EGR率;烟度、排气温度、燃油消耗率均随着EGR率的增加而增大;EGR率和喷油提前角应实现良好的匹配,才能保证NOx排放和燃油消耗率都能达到要求,其中小EGR率匹配小喷油提前角,大EGR率匹配大喷油提前角。  相似文献   

20.
Vehicle emissions regulations are becoming increasingly severe and remain a principal issue for vehicle manufacturers. Since, WLTP (Worldwide harmonized Light vehicles Test Procedures) and RDE (real driving emission) regulations have been recently introduced, the engine operating conditions have been rapidly changed during the emission tests. Significantly more emissions are emitted during transient operation conditions compared to those at steady state operation conditions. For a diesel engine, combustion control is one of the most effective approaches to reduce engine exhaust emissions, particularly during the transient operation. The concern of this paper is about reducing emissions using a closed loop combustion control system which includes a EGR rate estimation model. The combustion control system calculates the angular position where 50 % of the injected fuel mass is burned (MFB50) using in-cylinder pressure for every cycle. In addition, the fuel injection timing is changed to make current MFB50 follow the target values. The EGR rate can be estimated by using trapped air mass and in-cylinder pressure when the intake valves are closed. When the EGR rate is different from the normal steady conditions, the target of MFB50 and the fuel injection timing are changed. The accuracy of the model is verified through engine tests, as well as the effect of combustion control. The peaks in NO level was decreased during transient conditions after adoption of the EGR model-based closed loop combustion control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号