首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.   相似文献   

2.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

3.
CRTSⅠ型与CRTSⅡ型板式无砟轨道结构特点分析   总被引:6,自引:0,他引:6  
无砟轨道具有整体稳定性强、刚度均匀性好、线路平顺度高、耐久性强的突出优点,满足客运专线和高速铁路对轨道性能的要求,以板式无砟轨道为例,分别介绍了CRTSⅠ型板式无砟轨道与CRTSⅡ型板式无砟轨道的结构组成、板型分类、断面尺寸和对线下工程设计要求,对两种轨道系统的技术特点进行了分析,Ⅰ型轨道板比Ⅱ型轨道板制造简单、造价稍低,Ⅱ型板式无砟轨道比Ⅰ型板式无砟轨道几何精度高、结构整体性和纵向连续性好。  相似文献   

4.
为研究桥上纵连板式无砟轨道无缝道岔的力学特性,根据桥上纵连板式无砟轨道无缝道岔的特点,采用有限元方法,建立桥上纵连板式无砟轨道无缝道岔的纵-横-垂向空间耦合计算模型.以铺设在桥上的客运专线18号无砟轨道无缝单渡线为例,研究轨道板/底座板伸缩刚度、摩擦板长度、桥梁形式对桥上纵连板式无砟轨道无缝道岔力学特性的影响.结果表明:减小轨道板/底座板伸缩刚度,对轨道结构变形影响较小,但下部结构受力明显降低,最大降幅约为90%;增加摩擦板长度,有利于控制桥上无缝道岔的受力与变形,可减小下部结构受力,当摩擦板长度由50 m增至100 m时,端刺受力可减小约18%;桥上纵连板式无砟轨道无缝道岔宜铺设在连续梁上.  相似文献   

5.
CRTSⅡ型板断裂条件下桥上无缝线路伸缩力特性   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究桥上CRTSⅡ型轨道板断裂条件下轨道、桥梁结构纵向受力变形规律及其影响,基于有限元法和梁-板-轨相互作用机理,建立桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型,分析不同轨道板断缝位置、断缝宽度、裂缝深度及轨道板、底座板伸缩刚度对断板条件下桥上无砟轨道无缝线路伸缩力分布规律的影响.研究结果表明:在计算轨道板断裂条件下桥上无砟轨道无缝线路伸缩力时,应根据不同检算部件选取最不利的断板位置,建议将轨道板断缝宽度和深度分别取2 mm和200 mm、轨道板、底座板伸缩刚度折减至10%~50%,计算结果是偏安全的且不失一般性;轨道板断裂增加了断缝处CA (cement asphalt)砂浆层及底座板断裂的风险,断板侧的钢轨纵向位移及轨板相对位移均在断缝处急剧变化.  相似文献   

6.
针对刚构桥上无砟轨道无缝线路的受力与变形进行研究,以梁-板-轨相互作用原理为基础,分别建立刚构桥上CRTSⅢ型板式和CRTSⅠ型双块式无砟轨道无缝线路空间耦合模型,计算伸缩、挠曲、制动、断轨工况下轨道结构和桥梁纵向力及位移,并对两种轨道结构静力特性进行对比分析,为刚构桥上无缝线路轨道结构设计提供参考。结果显示:在温度荷载、列车荷载作用下,采用CRTSⅠ型双块式轨道结构时钢轨纵向力更小,但轨板相对位移增幅明显,可能产生安全隐患;在列车制动荷载工况下,采用CRTSⅢ型板式轨道结构时钢轨纵向力与轨板相对位移均更小;在断轨工况下,采用CRTSⅠ型双块式轨道结构时断缝值超过了规范容许限值。建议在刚构桥上采用CRTSⅢ型板式无砟轨道。  相似文献   

7.
为获得服役期间桥上纵连板式无砟轨道疲劳应力谱计算理论,考虑无砟轨道钢筋与混凝土的相互作用、无砟轨道混凝土的开裂与闭合效应、无砟轨道荷载的共同作用和时变特性,分别建立和验证了桥上纵连板式无砟轨道温度场计算模型、多尺度高速列车-纵连板式无砟轨道-桥梁三维有限元耦合动力学模型、纵连板式无砟轨道-桥梁-桥梁墩台纵向相互作用模型,并在此基础上,提出了桥上纵连板式无砟轨道疲劳应力谱计算理论.研究结果表明:利用提出的疲劳应力谱计算理论可得到服役期间桥上纵连板式无砟轨道各部件钢筋与混凝土应力时程曲线及疲劳应力谱;考虑多种荷载工况,能深入探讨桥上纵连板式无砟轨道疲劳破坏机理和影响规律;计算理论可为丰富和完善我国无砟轨道设计理论提供重要依据.   相似文献   

8.
新建石家庄至武汉客运专线湖北段TJⅡ标采用CRTSⅡ型板式无砟轨道和CRTSⅠ型双块式无砟轨道。通过介绍CRTSⅠ双块式和CRTSⅡ板式无砟轨道右线线路参数的异同,提出CRTSⅡ型无砟轨道因没有单独设计右线竖曲线而产生的长轨精调阶段右线线路参数如何实现问题,分析解决方法及替代方案,可为以后的无砟轨道设计或施工提供参考。  相似文献   

9.
考虑了无缝线路、扣件、无砟轨道和长大桥梁等多个结构之间的相互作用关系,创建了市域铁路长大桥上无砟轨道无缝线路的静力学仿真模型.应用所建立的仿真模型,计算分析不同荷载组合方式条件下轨道和桥梁结构的力学特性,为市域铁路长大桥上无缝线路计算和检算的荷载取值方法提供科学的建议.结果表明:相对于单独考虑各种荷载,同时考虑温度变化...  相似文献   

10.
高速铁路特大桥上无缝线路纵向附加力计算   总被引:16,自引:1,他引:16  
将轨道结构、桥梁及墩台基础作为一个整体系统,建立了桥上无缝线路纵向附加力计算的有限元模型,以京沪高速铁路中两座特大桥为例,研究了桥上无缝线路钢轨温度附加力、挠曲附加力的分布及其对桥梁墩台的传递规律,同时还分析了断轨力和制动附加力的影响.计算结果符合桥上无缝线路的基本原理。编制的计算软件(BCWR),可用于高速铁路特大桥上无缝线路的设计.  相似文献   

11.
桥梁温度跨度对CRTSⅡ型板式无砟轨道无缝线路的影响   总被引:2,自引:0,他引:2  
为探索桥上CRTSⅡ型板式无砟轨道的桥梁温度跨度的合理限值,运用线板桥墩一体化模型计算了不同温度跨度下钢轨制动力和伸缩力,基于弹性点支承梁理论分析了桥梁温度跨度对钢轨强度的影响,运用屈曲有限元分析了桥梁温度跨度对无缝线路稳定性的影响,根据钢轨与轨道板的相对位移分析了桥梁温度跨度对扣件耐久性的影响。结果表明,为保证无缝线路强度、稳定性及扣件耐久性,桥梁温度跨度的合理限值为482 m。  相似文献   

12.
CRTSⅢ型板式无砟轨道是具有完全自主知识产权的中国无砟轨道品牌,针对CRTSⅢ型板式无砟轨道车辆-轨道耦合系统动力参数的确定与优化问题,根据CRTSⅢ型板式无砟轨道系统结构特点,运用车辆-轨道耦合动力学理论,采用时域动力有限元方法,并引入无限单元法消除边界效应,建立CRTSⅢ型板式无砟轨道车辆-轨道耦合系统垂向振动模型,并编制MATLAB计算程序,利用单因素敏感性分析法分析了结构参数对车辆-轨道系统动力响应指标的敏感度,从而可为CRTSⅢ型板式无砟轨道结构动力参数的确定与优化提供理论支撑。  相似文献   

13.
为了降低高速铁路桥上结构的振动与噪声水平,以我国CRH2型高速车辆和32 m跨度高速铁路简支箱梁及CRTS I型板式无砟轨道为对象,建立高速车辆-无砟轨道-桥梁耦合振动分析模型,分析比较了不同行车速度下无砟轨道减振层刚度对车轨桥系统动力响应的影响,为桥上减振型板式轨道动力学参数设计提供参考。计算结果表明,桥上采用减振型板式轨道可显著降低轨道板垂向振动加速度,在本文计算条件下其最大加速度幅值较无减振层时减小了57%以上;减振型板式轨道能稍微降低轮轨动力作用,可减小简支箱梁垂向振动加速度20%左右;较低的减振层刚度增大了轨道板垂向振动位移,不利于高速行车安全,而过大的减振层刚度不能有效降低轨道结构振动,综合考虑后建议桥上减振型板式轨道弹性垫层刚度在100~200 MN/m3之间选取。  相似文献   

14.
针对中国高速铁路CRTSⅡ型板式无砟轨道界面初始黏结缺陷导致轨道结构温度变形进一步增大的现象, 基于电荷耦合器件(CCD)工业相机与计算机图片处理技术, 建立了板式无砟轨道界面空隙率试验检测系统, 测试了3块CRTSⅡ型板式无砟轨道板与水泥沥青(CA)砂浆界面的初始空隙率; 在有限元模型中以界面空隙率定量表征了界面的黏结状态, 即根据界面空隙率检测结果, 考虑界面存在一定量值的初始空隙率, 并假设这些空隙均匀分布在整个界面上, 系统分析了界面初始黏结缺陷对板式无砟轨道温度变形的影响。研究结果表明: 3块轨道板样本界面的初始平均空隙率为22.3%, 界面四周的初始黏结状态明显差于轨道板界面中心; 在正、负竖向温度梯度作用下, CRTSⅡ型板式无砟轨道分别呈现中心上拱和四周翘曲的温度变形模式; 正温度梯度作用下轨道板最大温度变形与不考虑界面初始黏结缺陷相比增大了7.8%~10.1%, 且随着界面初始空隙率的进一步增大, 轨道板最大上拱温度变形呈线性增大趋势; 负温度梯度作用下, 界面空隙率的增大对轨道板温度变形的影响不大; 在分析CRTSⅡ型板式无砟轨道温度变形时应适当考虑轨道板与CA砂浆的界面初始黏结缺陷, 研究结果可为分析CRTSⅡ型轨道板上拱温度变形机理提供参考。   相似文献   

15.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。   相似文献   

16.
为研究适应连续梁桥上单元板式无砟轨道的最大温度跨度,采用有限元方法建立了线-板-桥-墩一体化计算模型,分析了在不同轨温变化幅度下,桥梁伸缩、墩顶水平位移及列车制动荷载对桥上单元板式无砟轨道无缝线路温度跨度限值的影响.研究结果表明:温度跨度限值随轨温变化幅度的增加而降低;为保证钢轨强度、横向压弯变形及钢轨与轨道板相对位移等满足要求,当考虑桥梁伸缩时,以轨温变化40 ℃为例,其适应的温度跨度限值为271 m;随着墩顶水平位移的增加,桥梁温度跨度限值显著降低,当墩顶位移为30 mm时,温度跨度为237 m,当高墩桥梁墩顶位移超过30 mm时,应结合实际墩顶位移计算温度跨度限值;制动荷载下线路坡度对温度跨度限值影响较小,当线路坡度为20‰时,桥梁温度跨度限值为258 m.   相似文献   

17.
桥上无缝线路附加伸缩力的远程监测与分析   总被引:1,自引:0,他引:1  
针对高速铁路长大桥梁无砟轨道无缝线路这一复杂体系,以国内某高速铁路建设为背景,通过对该高速铁路长大桥梁无砟轨道无缝线路的试验研究,研制了高速铁路长大桥梁无砟轨道无缝线路长期、远程和实时监测系统。利用远程监测所得到的应变,推导了伸缩附加力的计算公式。运用该方法对某高速铁路长大桥梁无砟轨道无缝线路进行了监测,试验结果验证了监测系统的可行性和有效性。  相似文献   

18.
在我国铁路的建设过程中,高架桥梁所占的比例越来越大。桥梁的活动支座处存在一定数量的摩阻力,在温度和车辆荷载的作用下,可能会使轨道和桥梁结构的受力与变形增大。由于现有的铁路设计规范中对活动支座处的摩阻力并没有特殊的规定,因此在进行常规的理论仿真分析时,一般不考虑活动支座处摩阻力的影响,这种算法上的简化可能会使温度和车辆荷载作用下的计算结果产生比较大的偏差。通过建立考虑活动支座摩阻力和不考虑活动支座摩阻力的两种铺设CRTSⅠ型板式无砟轨道的桥上无缝线路精细化空间耦合仿真模型,研究活动支座处摩阻力对梁轨相互作用的影响,并对今后分析桥上无砟轨道无缝线路结构时是否考虑活动支座处的摩阻力提供建议和参考依据。  相似文献   

19.
结合石家庄至武汉铁路客运专线CRTSⅠ型板式无砟轨道板铺设施工工程实践,介绍了桥上CRTSⅠ型板式无砟道床的底座砼浇筑、凸形挡台施工、轨道板铺设及填充层施工等关键技术及施工工艺,可供同类工程参考。  相似文献   

20.
大跨桥上纵连板式轨道受压稳定性   总被引:3,自引:0,他引:3  
为探讨大跨桥上纵连板式轨道的受压稳定措施,根据大跨桥上纵连板式轨道的结构和纵向受力特点,以某跨径为94 m 168 m 84 m的预应力混凝土连续刚构桥为例,建立了轨道板-桥梁-墩台的有限元模型,并确定纵连板和底座板最不利段.将列车荷载作用下纵连板和底座板向上的挠曲作为初始弯曲缺陷,按照第二类稳定问题对纵连板式轨道的受压稳定性进行了分析.结果表明,对大跨桥上的纵连板式无砟轨道,在列车荷载和温度压力的共同作用下,纵连板和底座板可能发生竖向失稳,可设置"倒L"型双向挡块以增加稳定性;当纵连板和底座板的最大允许温升为30℃时,该桥"倒L"型双向挡块的间距不宜大于16.7 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号