共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The large scale diversion tunnel of Baihetan Hydropower Station has complex geological conditions, thus various problems of rock mechanics appeared during the process of excavation. Typical damage and fracture mechanics are analyzed in depth, including the collapse along weak rock joint, stress controlled spalling, failure modes of fractured rock mass, relaxation damage of fractured rock columnar joints, localized stress affected by structural surfaces and stress controlled problems of superior fracture combinations. Engineering countermeasures are also summarised, which includes supporting measures, construction methods, supporting time, and monitoring and feedback methods for different types of failure. Through these measures, rock mechanics problems are successfully solved. Stability control of the surrounding rock of underground caverns under complicated geological conditions are achieved, ensuring successful completion of the enormous diversion tunnel of Baihetan. 相似文献
3.
4.
The author focuse on the great challenges encountered during the tunneling process in the Wuhan Sanyang Road Tunnel, and the key techniques adopted to solve those problems. When tunneling in composite strata, engineers inevitably face problems such as inefficient excavation, excessive tool wear, excavation face instability and the risk of clogging. The TBM used in the project allows tool change under atmospheric pressure, which improves the efficiency of tool change and eliminated the risk of casualties during hyperbaric interventions. In terms of the tool wear and clogging, the authors propose technical solutions as follows: the optimization of the tool′s type and configuration, improvement of the central flushing system and chemical dissolution of clogging. The results indicate that through the countermeasures proposed, the tunneling efficiency can be improved effectively. They also reduce the cutter change frequency and eliminate the risk of TBM downtime. The technical achievements obtained in the construction of the Wuhan Sanyang Road Tunnel can provide technical reference for the construction of large diameter shield tunnels in composite strata in the future. 相似文献
5.
6.
营运中的盾构隧道在邻近施工时周围地盘的应力可能因扰动而重新分布,使得盾构隧道暴露在因变形或位移衍生的结构损坏或营运中断等高风险下。为降低相关风险发生的可能性或后果的严重性,高雄计划将高雄车站段地下化工程捷运-R11永久站施工纳入风险管理,通过风险辨识、分析、评估以及以监测、巡检及沟通为基础的风险追踪查核等手段执行风险管理。依本计划执行成果,位于基地两侧营运中的盾构隧道在永久站主体工程开挖施工期间,各项风险均受到妥善的追踪、管控及处置。 相似文献
7.
8.
For the water conveyance tunnels in the long distance water diversion projects constructed or planned in China, most of them have to pass through mountain areas with complex geological conditions, due to the constraints of route selection. These tunnels might face engineering problems such as harsh natural environment, high seismic intensity and steep terrain, leading to difficulties in construction and high operational risks. In this paper, some key technical issues on the construction of ultra long deep buried water conveyance tunnels under complex geological conditions are summarized into 5 aspects, namely, (1) exploration and testing techniques for deep buried tunnels, (2) prediction and prevention for large deformation and rock burst in the surrounding rock masses, (3) failure mechanism and anti faulting techniques of the surrounding rock masses and lining for tunnels crossing active faults, (4) synergistic load bearing mechanism and life cycle design theory for rock support system of deep buried tunnels, (5) disaster treatment for deep and long tunnels such as prevention of high pressure water inrush. The scientific and technical problems to be solved and their development directions are pointed out, which can provide some reference for engineering construction of ultra long deep buried tunnels. 相似文献
9.
10.
11.
Study of Design and Construction Technology of Ultra large span Tunnel at Badaling Great Wall Station(八达岭长城站超大跨度隧道设计施工技术研究) 总被引:1,自引:0,他引:1
The large span transition section at Badaling Great Wall Station with a maximum excavation span of 32.7 m and an excavation area of 494.4 m2 is the traffic tunnel with the largest excavation span and excavation section area in the world, resulting in substantial construction difficulty and high safety risk. To ensure the construction safety of Badaling Great Wall Station, the support parameter design, a new excavation method, and the surrounding rock deformation control principle for tunnels with an ultra large section are studied. The study results show that: (1) According to the checking calculation, the support system had a safety factor of 1.16-2.46 during the construction period and 1.59-3.54 during the operation period, i.e., its engineering structure is safe and reliable. (2) The innovative triangle type excavation applied to the tunnel with an ultra large span and section has the advantages of a simple and clear method, safe and reliable structure, high applicability of mechanical equipment and high construction efficiency. (3) Depending on different surrounding rock classes and spans, the criteria for total deformation control of the large span transition section at Badaling Great Wall Station are as follows: in the case of class Ⅱ surrounding rock, the total settlement is 20-30 mm, and the total horizontal convergence is 15-20 mm; in the case of class Ⅲ surrounding rock, the total settlement is 30-40 mm, and the total horizontal convergence is 20-25 mm; in the case of class Ⅳ surrounding rock, the total settlement is 60-90 mm, and the total horizontal convergence is 40-55 mm; in the case of class Ⅴ surrounding rock, the total settlement is 130-190 mm, and the total horizontal convergence is 90-105 mm. (4) According to the numerical simulation, the innovative triangle type excavation method results in deformation that is mainly centralized in the tunnel arch making stage, accounting for approximately 95% of the total, followed by deformation in the side making stage, accounting for 4% of the total, with the smallest deformation only accounting for 1% in the inverted arch making stage. 相似文献
12.
The project under study is an overlapping twisted shield bored tunnels in weak water rich strata. The purpose of the study is to solve the key technological problems in the construction of the project. The optimal construction sequence of the overlapping twisted shield tunnels is determined according to the engineering geological conditions, the surrounding working environment, and theoretical analysis on the spatial relationship of the four tunnels, and verification control are carried out via monitoring means. The tunnel construction is properly timed, smart self propelled movable support jumbo is adopted, and grouting reinforcement technology is used to ensure the construction safety of the overlapping twisted shield bored tunnels. The grouting pre reinforcement technology and the clay shock technology are adopted to ensure the safety of the surrounding buildings. The technologies for the construction of the overlapping twisted shield bored tunnels described in this paper is of great significance for the construction of similar overlapping tunnels with high shield launching/receiving risks and crossing under important structures with small clearance. 相似文献
13.
14.
15.
16.
In recent years, the Direct Pipe Construction Technology, as a new construction method and a new equipment in the international trenchless field, has gained advantages over the horizontal directional drilling (HDD) method where the construction site is limited, there is a big elevation drop between the launch and reception points, the burial depth of the pipeline is shallow, or the construction cost of the pipejacking is high. This method combines the characteristics of microtunneling and HDD. When the tunneling equipment is excavating, prefabricated pipes are laid by pipe thrusters simultaneously. The Wuding River Crossing Project of the 4 th Shaanxi Beijing Pipeline has a big elevation drop and a complex geology. The crossing project was carried out using the Direct Pipe method, which achieved a fast construction speed, simple construction process and less land occupation. The project has also achieved good economic and social benefits. 相似文献
17.
LI Zhipeng 《隧道建设》2019,39(9):1486-1493
In order to select a suitable ventilation scheme for a single tube extra long highway tunnel with two way traffic, as well as to solve problems in smoke exhaust and personnel evacuation in such tunnel, 3 ventilation schemes are proposed. According to the characteristics of Zhagaliang extra long highway tunnel, the 3 ventilation schemes include confluent ventilation with exhaust shaft and longitudinal ventilation with jet fans, parallel pilot tunnel forced ventilation network, and longitudinal ventilation with jet fans and sectional smoke exhaust by inclined shaft. The ventilation schemes are compared from several aspects, i.e. civil construction cost, initial investment of mechanical and electrical equipment, electricity cost during tunnel operation, ventilation control, stability of ventilation network, applicability, management and maintenance. Finally, the most suitable ventilation scheme is selected by comparing the advantages and disadvantages of each scheme, i.e. longitudinal ventilation with jet fans and sectional smoke exhaust by inclined shaft. Under the normal operation condition of the tunnel, longitudinal ventilation with jet fans is adopted in the main tunnel, and on demand ventilation can be realized. Smoke can be exhausted by inclined shaft in case of fire, which can solve the problem of smoke exhaust only in two sections by the parallel pilot tunnel. The parallel pilot tunnel can also be used for personnel evacuation and rescue. 相似文献
18.
Targeted to the issue of lacking of systematic design standards for thermal insulation and drainage facilities of railway tunnels in cold regions, the authors propose the method of design division of railway tunnels in cold regions based on the division of cold regions, the current technical status of thermal insulation and drainage in tunnels, and the investigation on some tunnel freezing damage cases in northeastern China and the northern part of North China. Through analyzing the application conditions of the thermal insulation and drainage facilities and combining the measured temperatures in the operating tunnels and drainage facilities, the authors propose the suggested length for the thermal insulation and drainage facilities of tunnels in cold regions in different divisions. The results show that: (1)railway tunnels in cold regions may be classified into 5 divisions based on annual average temperature and average temperature in the coldest month; (2)the elevated thermal insulation ditch only adapts to the cold regions with a higher temperature; (3)an effective measure for thermal insulation and drainage in cold regions is to embed ditches into structures within a certain range from the portal; (4)the ditches may be arranged in structures for the trunk section of long tunnels equipped with thermal insulation measures; (5)for the tunnels with the necessary conditions available, the double spur grade and a steep gradient in the longitudinal slope may be applied, which is beneficial to improving drainage conditions and preventing the ditch from freezing. 相似文献
19.