首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The increasing popularity of sport utility/light-duty vehicles has prompted the investigation of active roll management systems to reduce vehicle body roll. To minimize vehicle body roll and improve passenger comfort, one emerging solution is an active torsion bar control system. The validation of automotive safety systems requires analytical evaluation and laboratory testing prior to implementation on an actual vehicle. In this article, a computer simulation tool and accompanying hardware-in-the-loop test environment are presented for active torsion bar systems to study component configurations and performance limits. The numerical simulation illustrates that the hydraulic cylinder extension limits the active torsion system’s ability to provide body roll angle reduction under various driving conditions. To compare the control system’s time constant and body roll minimization capabilities for different hydraulic valve assemblies and equivalent hose lengths, an experimental test stand was created. For a typical hydraulic pressure and hose diameter, the equivalent hose length was not a key design variable that impacted the system response time. However, the servo-valve offered a quicker transient response and smoother steady-state behavior than the solenoid poppet actuators that may increase occupant safety and comfort.  相似文献   

2.
Rollover mitigation for a heavy commercial vehicle   总被引:1,自引:0,他引:1  
A heavy commercial vehicle has a high probability of rollover because it is usually loaded heavily and thus has a high center of gravity. An anti-roll bar is efficient for rollover mitigation, but it can cause poor ride comfort when the roll stiffness is excessively high. Therefore, active roll control (ARC) systems have been developed to optimally control the roll state of a vehicle while maintaining ride comfort. Previously developed ARC systems have some disadvantages, such as cost, complexity, power consumption, and weight. In this study, an ARC-based rear air suspension for a heavy commercial vehicle, which does not require additional power for control, was designed and manufactured. The rollover index-based vehicle rollover mitigation control scheme was used for the ARC system. Multi-body dynamic models of the suspension subsystem and the full vehicle were used to design the rear air suspension and the ARC system. The reference rollover index was tuned through lab tests. Field tests, such as steady state cornering tests and step steer tests, demonstrated that the roll response characteristics in the steady state and transient state were improved.  相似文献   

3.
Cornering maneuvers with reduced body roll and without loss in comfort are leading requirements for car manufacturers. An electric active roll control (ARC) system controls body roll angle with motor-driven actuators installed in the centers of the front and rear stabilizer bars. A vehicle analysis model developed using a CarSim S/W was validated using vehicle test data. Two ARC algorithms for a sports utility vehicle (SUV) were designed using a sliding-mode control algorithm based on a nonlinear roll model and an estimated lateral acceleration based on a linearized roll model. Co-simulation with the Matlab simulink controller model and the CarSim vehicle model were conducted to evaluate the performance of two ARC control algorithms. To validate the ARC performance in a real vehicle, vehicle tests were conducted at KATECH proving ground using a small SUV equipped with two ARC actuators, upper and lower controllers and a few subsystems. From the simulation and vehicle validation test results, the proposed ARC control algorithm for the developed ARC actuator prototypes improves the vehicle’s dynamic performance.  相似文献   

4.
Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.  相似文献   

5.
在建立了汽车转向与悬架系统的综合模型的基础上,运用一种具有扩展的调节器结构LQG控制方法,设计了 主动悬架控制器,实现对车身横摆角速度、车身垂直加速度、车身侧倾角和俯仰角的集成控制,从而显著提高汽车的 平顺性、操纵稳定性和安全性。  相似文献   

6.
Active roll control is known to offer substantial improvements in ride and handling performance over the most sophisticated passive suspension systems. However although many different active suspension systems have been discussed and analysed through simulation little information regarding experimental performance data from a prototype active roll control system has been published. This study focuses on the design, development, commissioning and experimental evaluation of a roll control suspension based on active anti-roll bar actuation. In tests, the prototype vehicle demonstrated excellent steady state and dynamic roll cancellation within the lateral acceleration range of 0.5g. Subjective assessments of the system confirmed the benefits of a level ride together with the added benefit accrued from the elimination of roll dynamics.  相似文献   

7.
The design of passive suspension systems using conventional springs and dampers is limited by the need to compromise between vehicle ride and handling functions. The Interconnected Hydragas Suspension fitted to the current Rover 100 series partially allays this compromise by reducing the vehicle pitch stiffness witfiout affecting the bounce and roll stiffnesses. However, the vehicle body is still subject to roll during cornering manoeuvres. This paper outlines the development and simulation of a sealed low bandwidth active roll control suspension based on the existing Interconnected Hydragas System. Following a brief explanation of the Hydragas suspension operating principle die paper outlines the design of a fluid displacer or 'shuttle'. This shuttle enables control over body roll during manoeuvres by displacing fluid from one side of the car to the other. Care is taken to ensure low power consumption whilst the sealed nature of the fluid based suspension units guarantee reliable operation without leakage. Using computer simulation, the system performance is predicted and compared with experimental measurements. It is shown that roll during manoeuvres can be reduced or eliminated using a minimum of hydraulic components with only moderate power consumption and cost.  相似文献   

8.
针对车辆减少能量消耗与提高抗侧倾能力需求,提出了一种主/被动可切换的液压互联悬架抗侧倾控制方法。基于9自由度车辆动力学模型,考虑蓄能器、液压缸、液压泵三者之间耦合的体积-流量-压力特性,建立液压互联悬架主动控制时域模型;结合"车身侧倾角-车身侧倾角速度"相平面法及车辆侧向加速度,得到车辆侧倾稳定域,并提出液压互联悬架系统侧倾稳定性控制介入与退出判据;在此基础上,采用Backstepping非线性控制算法设计主动液压互联抗侧倾控制器。最后,分析并改进侧倾稳定性评价指标,通过在MATLAB/Simulink环境下进行高速双移线、鱼钩试验等极端工况数值仿真,验证所提出的液压互联悬架主/被动切换控制系统能在减少能量消耗的情况下能否提高车辆抗侧翻的能力。研究结果表明:所提出的控制系统能有效提高车辆抗侧翻能力;当车辆侧倾状态超出设定的侧倾稳定区域介入线时,液压互联悬架系统由被动模式切换为主动抗侧倾模式,控制车辆侧倾状态回到稳定区域,以提高车辆侧倾稳定性;当判定车辆侧倾状态满足主动控制退出条件时,液压互联悬架系统回到被动模式,以减小能量消耗。  相似文献   

9.
李显生  许洪国 《汽车工程》1996,18(6):355-359
将新式主动横向稳定器安装在中型货画的前轴和后轴,通过液压缸与车架连接。本文研究了该稳定器对降低车身侧倾和提高舒适性的效果。仿真分析和实车试验表明,采用前轮转角前馈控制方法,汽车转向时,稳定器产生反侧倾力矩,大幅度地降低车身侧倾。  相似文献   

10.
Advanced Control Methods of Active Suspension   总被引:1,自引:0,他引:1  
This paper describes new control methods for the active suspension. For improving ride comfort further, preview control rule is proposed. For improving stability further, roll stiffness distribution control rule is examined by the test vehicle. Simulations and vehicle driving tests are conducted to confirm the effect of these new control methods. The results of simulations and vehicle driving tests show in our research phase that preview control can achieve a substantial improvement in ride comfort and application of roll stiffness distribution control provides a large improvement in stability  相似文献   

11.
SUMMARY

This paper describes new control methods for the active suspension. For improving ride comfort further, preview control rule is proposed. For improving stability further, roll stiffness distribution control rule is examined by the test vehicle. Simulations and vehicle driving tests are conducted to confirm the effect of these new control methods. The results of simulations and vehicle driving tests show in our research phase that preview control can achieve a substantial improvement in ride comfort and application of roll stiffness distribution control provides a large improvement in stability  相似文献   

12.
The Vehicle stability control system is an active safety system designed to prevent accidents from occurring and to stabilize dynamic maneuvers of a vehicle by generating an artificial yaw moment using differential brakes. In this paper, in order to enhance vehicle steerability, lateral stability, and roll stability, each reference yaw rate is designed and combined into a target yaw rate depending on the driving situation. A yaw rate controller is designed to track the target yaw rate based on sliding mode control theory. To generate the total yaw moment required from the proposed yaw rate controller, each brake pressure is properly distributed with effective control wheel decision. Estimators are developed to identify the roll angle and body sideslip angle of a vehicle based on the simplified roll dynamics model and parameter adaptation approach. The performance of the proposed vehicle stability control system and estimation algorithms is verified with simulation results and experimental results.  相似文献   

13.
This paper describes an investigation into active roll control of articulated vehicles. The objective is to minimise lateral load transfer using anti-roll bars incorporating low bandwidth hydraulic actuators. Results from handling tests performed on an articulated vehicle are used to validate a nonlinear yaw/roll model of the vehicle. The methodology used to design lateral acceleration controllers for vehicles equipped with active anti-roll bars is developed using a simplified linear articulated vehicle model. The hardware limitations and power consumption requirements of the active elements are studied. The controller is then implemented in the validated articulated vehicle model to evaluate the performance of an articulated lorry with active anti-roll bars. The simulation results demonstrate the possibility of a significant improvement in transient roll performance of the vehicle, using a relatively low power system (10 kW), with low bandwidth actuators (5 Hz).  相似文献   

14.
A vehicle model incorporating front and rear wheel suspensions and seat suspension is presented. The suspension control includes algorithms to provide both dynamic and steady state (levelling) control. Vehicle response to (a) vertical inputs due to ground disturbances at the wheels and (b) longitudinal inputs due to the inertial forces during braking and accelerating, are investigated. It is shown that the static (self-levelling) control causes a slight deterioration in dynamic performance. The active ride control produces improvements of ride comfort under dynamic conditions compared to an equivalent passively suspended vehicle. In steady state the proposed control eliminates the error heave of the body caused by tilting of the vehicle with active suspension.  相似文献   

15.
In this study, shape optimization was conducted for a vehicle’s rear suspension torsion beam to improve its dynamic handling performance. To determine the design variables affecting the vehicle roll characteristics, a sensitivity analysis was conducted using the result of a Taguchi experiment with 6 factors in 8 runs. The upper and lower-flange lengths and web thickness of the torsion beam section, as well as the vertical height difference between the inner and outer of torsion beams, were determined as design variables through sensitivity analysis of the opposite wheel travel test for optimization of the torsion beam axle. The Box–Behnken experimental design with 4 factors and 27 runs was performed using the selected design variables and by performing opposite wheel travel analysis according to the experimental design, and the response surface functions of the roll stiffness, roll steer coefficient, roll center height, and mass of the torsion beam were generated. Using these response functions, shape optimization was conducted for the torsion beam of the rear suspension system. Dynamic performance analysis was performed by applying the optimized H-shaped torsion beam to the rear suspension of the vehicle dynamics model, and it was validated that the dynamic response performance of the optimized vehicle was improved.  相似文献   

16.
汽车主动悬架与电动助力转向系统自适应模糊集成控制   总被引:5,自引:0,他引:5  
建立了包含转向运动模型、俯仰运动模型和侧倾运动模型的汽车整车模型,在设计了电动助力转向系统PD控制的基础上,构建了基于自适应模糊控制的汽车主动悬架与电动助力转向系统集成控制器,当控制系统偏差变小或变大时,调整因子总能保证系统稳定,便于工程应用。计算结果表明,该自适应模糊集成控制策略,既保证了车辆操纵轻便性,又显著提高了整车操纵稳定性、安全性和行驶平顺性等整车综合性能。  相似文献   

17.
ABSTRACT

This paper introduces the concept of managing air in commercial vehicle suspensions for reducing body roll. A conventional pneumatic suspension is re-designed to include higher-flow air hoses and dual levelling valves for improving the dynamic response of the suspension to the body roll, which commonly happens at relatively low frequencies. The improved air management allows air to get from the air tank to the airsprings quicker, and also changes the side-to-side suspension air pressure such that the suspension forces can more readily level the vehicle body, much in the same manner as an anti-roll bar (ARB). The results of a multi-domain simulation study in AMESim and TruckSim indicate that the proposed suspension configuration is capable of providing balanced airflow to the truck’s drive-axle suspensions, resulting in balanced suspension forces in response to single lane change and steady-state cornering steering maneuvers. The simulation results further indicate that a truck equipped with the reconfigured suspension experiences a uniform dynamic load sharing, smoother body motion (less roll angle), and improved handling and stability during steering maneuvers commonly occurring in commercial trucks during their intended use.  相似文献   

18.
This paper presents the results of a comprehensive study on heavy-duty vehicle (HDV) roll stability improvement technology. The proposed rollover threat warning system uses the real-time dynamic model-based time-to-rollover (TTR) metric as a basis for online rollover detections. Its feasibility for implementation in a HDV rollover threat detection system is demonstrated through vehicle dynamic simulation studies. The research on the development of a rollover threat detection system is further enhanced in combination with an active roll control system using active suspension mechanism to improve heavy-duty trucks’ roll stability both in the static cornering and in emergency maneuvers. It has been demonstrated that the roll stability of typical heavy-duty trucks has been largely improved by the proposed active safety monitoring and control system.  相似文献   

19.
在现代汽车设计中,舒适性越来越受到重视,对汽车平顺性的要求也越来越高。为使汽车在行驶当中能够获得适当的操控性与舒适性,扭杆弹簧因此被用作汽车悬挂系统中的减振装置,利用弹簧的变形以吸收能量,缓解汽车在行驶时产生的振动和倾斜,在汽车上担负着十分重要的角色。文章分别介绍汽车悬挂扭杆弹簧的功用特点、结构原理,指出了适用车型,以及扭杆弹簧的加工制造和在车架上的装配要点。  相似文献   

20.
汽车主动悬架的单神经元自适应控制   总被引:2,自引:0,他引:2  
金耀  于德介  宋晓琳 《汽车工程》2006,28(10):933-936
在1/4汽车动力学模型的基础上,设计了汽车主动悬架的自适应神经元控制器。以车辆的行驶平顺性为主要控制目标,车身垂直加速度、悬架动挠度、车轮动位移为具体评价参数,研究了系统在随机路面激励条件下的时域响应,计算了振动响应的均方根值,考察了在变参数条件下控制器的鲁棒性。仿真结果表明,该控制器能有效改善车辆的综合性能,尤其是平顺性和舒适性,并且具有较好的鲁棒性,对模型参数的变化有一定的适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号