共查询到20条相似文献,搜索用时 15 毫秒
1.
基于遗传算法的交通流量组合预测 总被引:3,自引:1,他引:3
针对当前道路交通流量预测的多种不同特性的方法,提出了一种组合预测方法。利用遗传算法群体搜索的特点,组合各种算法,优化预测思路,充分发掘不同算法的差异优势,实践证明该思路是切实有效的。 相似文献
2.
参数选择问题影响了支持向量机预测模型在交通流量中的预测性能.为了解决支持向量机预测模型的参数选择问题,引入了粒子群优化算法机制,通过粒子群优化选择支持向量机预测模型的学习训练参数,得到较优的PSO-SVM预测模型.通过实例仿真实验,将PSO- SVM预测模型与神经网络预测模型进行了比较,显示了其优越性. 相似文献
3.
为了提高船舶交通流量的预测精度,在BP神经网络的基础上,结合遗传算法(GA)建立一个新的预测模型.该模型利用GA自适应搜索能力和较快的收敛速度,进而确定BP神经网络中的最优权值和阈值.以青岛港2011—2019年船舶交通流量统计数据为例,进行仿真实例验证.结果表明,与传统的BP神经网络相比,该模型能显著地提高船舶交通流量的预测精度,用于预测船舶交通流量具有一定可行性. 相似文献
4.
基于MRA和AMFNN的交通流量预测 总被引:4,自引:0,他引:4
为了研究城市道路动态变化的交通流量,本文提出了在多分辨率分析(MRA)的基础上利用加乘模糊神经网络(AMFNN)进行预测的方法,并给出了交通流量的预测模型,同时,用实测的流量数据测试了模型的性能.仿真实验表明,采用基于多分辨率分析的加乘模糊神经网络非线性方法能够获得较满意的预测结果。 相似文献
5.
随着智能运输系统的广泛应用,实时交通流量预测的重要性也日益显著。本文介绍了预测模型发展过程中比较重要的几个模型,并由此引出人工神经网络。介绍误差逆传播(BP)模型的相关理论。指出传统BP神经网络的缺陷,并提出提高预测精度的措施引进高阶神经网络。建立普通BP神经网络的预测模型,利用误差反传播算法实现这些影响因素到输出变量的复杂映射,再用高阶神经网络构建另一预测模型。利用交叉口实测数据进行预测,并用实际数据进行比较验证。 相似文献
6.
免疫理论中的基于浓度选择机制能避免粒子群算法在群体收敛性和个体多样性平衡问题上的不足,使改进后的粒子群算法优化BP神经网络参数的配置,提高短时交通流量预测的准确性。仿真实验表明:免疫粒子群优化后的BP神经网络可有效提高短时交通流量的预测精度,减小预测误差。 相似文献
7.
8.
基于RBF神经网络的短时交通流量预测 总被引:3,自引:0,他引:3
城市交通网络是个复杂的系统,不同时段的交通流量之间有着非线性关系.神经网络具有识别复杂非线性系统的特性.利用RBF神经网络构建了短时交通流量动态预测模型,对某城市道路的短时交通流量进行预测,取得了较好的结果. 相似文献
9.
目前,高速公路交通管控部门对准确交通数据的掌握还存在局限性,预测值也不够精确,为给出行者提供更好的交通引导,必须采用新方法预估误差较小的交通流量数据.提出一种同时考虑时间与空间因素的卷积-双向长短期记忆(CNN-BiLSTM)模型,将具有空间局部特征提取能力的卷积神经网络(CNN)和具有能同时考虑前后方向长时间信息的双向长短期记忆(BiLSTM)相结合,将其用于预测更能体现随时空变化不断波动的交通流量.以一些简单的基准方法作为对比模型,采用均方误差(MSE)等5项评估指标,在美国加州高速公路数据集上进行训练和测试,结果表明:由CNN-BiLSTM得出的预测结果更符合实际交通流量的变化趋势,在高峰期和波动较大时间段均能较好地拟合真实值,灵敏度较高. 相似文献
10.
王怡财 《辽宁省交通高等专科学校学报》2009,11(4):18-20
交通流量的预测与控制是现代交通中的一项重要任务,本文基于自动控制理论,提出几种交通流量的动态预测方案并进行比较;最后给出了最佳系统控制框图及主要参数。并对一组实际的交通流量进行了预测。仿真结果表明,本系统能较准确地预测交通流量,但只适用于预测短时交通流量。 相似文献
11.
为深入挖掘交通流数据的复杂时空特征并建立其依赖关系,提高交通流参数的预测精度,
本文提出一种新的交通流量预测模型——基于注意力机制和残差网络的时空关系图卷积网络
(TSARGCN)。TSARGCN对输入数据进行切片,实现多分支建模,挖掘数据的时间周期性特征;
引入残差网络保证网络中信息传递的完整性;利用DTW (Dynamic Time Warping)算法计算路网
中节点之间交通流量序列在时间维度的相似程度大小,提出时间图的概念,结合路网结构中各节
点的邻近关系,提出时空关系图的概念;基于时空关系图,在每个分支结合注意力机制分别进行图卷积和时间维度卷积,捕获交通流的时空特征及其依赖关系,实现对路网交通流量数据时空关系的建模。经过在公开数据集PEMSD4上进行实验,结果表明:TSARGCN在交通流量预测中的平均绝对误差 (MAE) 达 到 19.24,均方根误差 (RMSE) 达到 27.09,比 ARIMA(Autoregressive
Integrated Moving Average model),Conv-LSTM(Convolution Long short-term memory)及 ASTGCN
(Attention based Spatial-temporal Graph Convolutional Network)等知名交通流量预测算法具有更高的预测精度。 相似文献
12.
《山东交通学院学报》2017,(3):22-29
短时交通流量是短时交通参数的基础参数之一,其变化规律可直观反映调查路段或区域的交通变化趋势,可为交通出行提供有效的路径选择信息。基于对统计分析模型、人工智能模型、非线性理论、交通模拟、组合预测模型等短时交通流量预测方法特点和应用的分析,鉴于短时交通流量自身的随机波动特性,指出单一的交通参数预测方法很难有效提高预测的精度和效果,而基于组合预测模型的预测方法具有广阔的应用前景和实践意义,并指出短时交通流量预测方法研究领域今后可能的发展趋势。 相似文献
13.
为充分挖掘交通流量的复杂时空动态相关性以提高交通流量预测精度,引入空间注意力机制与膨胀因果卷积神经网络,提出一种基于时空注意力卷积神经网络的交通流量预测模型(spatio-temporal attention convolutional neural network,STACNN).首先,由膨胀因果卷积与门控单元构建的门控时间卷积网络模块用于获取交通流量的非线性时间动态相关性,避免在训练长时间序列时发生梯度消失或梯度爆炸;其次,采用空间注意力机制为路网中的交通传感器节点自动分配注意力权重,动态关注不相邻节点之间的空间关系,并结合图卷积神经网络提取路网的局部空间动态相关性特征;然后,通过全连接层获取最终的交通流量预测结果;最后,利用高速公路交通数据集PEMSD4、PEMSD8进行了60 min的交通流量预测实验.实验结果表明:与基线模型中具有良好性能的时空图卷积网络(spatio-temporal graph convolutional network,STGCN)模型相比,提出的STACNN模型预测结果的平均绝对误差(mean absolute error,MAE)在两个数据集上分别提... 相似文献
14.
针对机场场面交通可获数据的局限性,为精准提取机场交通数据时空特征及预测场面交通流量。首先,基于推出控制理论,建立机场场面运行数值仿真模型,得到因数据局限无法获取的预测指标;其次,搭建卷积神经网络(CNN)与长短期记忆网络(LSTM)组合预测模型提取时空特征;最后,以河南郑州机场为例进行试验验证,比较模型在不同训练数据量下的预测性能与误差指标,结果表明基于仿真指标的预测模型预测结果精确度高且性能稳定。 相似文献
15.
16.
通过构建一个由船载AIS、岸台AIS及相关的应用软件组成的船舶交通流量统计系统,对通过航道某一断面的船舶交通流量进行自动统计,同时针对统计过程中存在的漏统计问题,采用了感知神经网络校验的解决方法.通过开发模拟软件对通过武汉长江大桥的船舶进行了交通流量的自动统计及校验实验,验证了该方法的可行性. 相似文献
17.
改进非参数回归在交通流量预测中的应用 总被引:1,自引:0,他引:1
实时、准确的短时交通流量预测是实现交通控制与诱导的关键。结合模式识别的思想,提出基于模式识别的非参数回归算法,并将之应用于短时交通流量预测,最后用仿真试验检验了方法的有效性,仿真试验结果表明,该方法具有较高的预测精度。 相似文献
18.
改进非参数回归在交通流量预测中的应用 总被引:1,自引:0,他引:1
实时、准确的短时交通流量预测是实现交通控制与诱导的关键。结合模式识别的思想,提出基于模式识别的非参数回归算法,并将之应用于短时交通流量预测,最后用仿真试验检验了方法的有效性,仿真试验结果表明,该方法具有较高的预测精度。 相似文献
19.
贝叶斯网络是处理不确定信息和进行概率推理的有力工具,针对短时交通流量预测的难题,提出一种基于贝叶斯网络的多方法组合预测模型. 首先建立几种基本预测模型并对交通流量进行预测,然后将预测的结果和实际结果按一定步长进行离散处理,把离散后的结果用贝叶斯网络进行学习,更新贝叶斯网络参数,通过联合推理求得各个基本预测模型预测结果组合下可能组合预测值的后验概率,把后验概率最大所对应的值作为预测值. 通过对实际道路交通流量的预测表明,本文提出的贝叶斯网络多方法组合预测模型的预测结果精度优于单一的预测模型,从而论证了本文提出的贝叶斯网络多方法组合预测模型具有一定的实用性. 相似文献