首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
单/双圆柱壳体结构是潜艇的两种典型结构形式。以单/双壳体潜艇典型结构为研究对象,分别设计初始深水静压强度相当的典型单/双耐压环肋圆柱壳体结构模型,基于MSC/Dytran罚函数接触算法,开展相同撞击强度载荷作用下结构模型耐撞动态响应特性分析,提取撞击后结构模型中耐压壳体结构的稳定变形位移场,作为MSC/Marc静强度求解的初始位移边界条件输入,通过有限元数值方法,对撞击后典型单/双结构耐压壳体结构的剩余强度特性进行比较分析。分析结果表明,当撞击载荷强度较低时,双壳模型的耐压壳体结构剩余强度较大,随着撞击载荷强度的不断增大,单/双壳结构耐压壳体结构的剩余强度将趋于一致,进一步提高撞击载荷强度,单壳体结构的剩余强度将高于双壳体结构。  相似文献   

2.
3.
潜艇耐压液舱结构强度研究   总被引:7,自引:0,他引:7  
本文应用弹性力学经典理论和求解环肋柱壳的传统方法,将耐压液舱结构的几种结构形式综合成统一的力学模型,并进行整体求解,获得解析表达式。力学模型清晰合理、求解简便、计算结果符合实际,可应用于工程设计。  相似文献   

4.
郭育豪  周雷  张阳  刘刚  黄一 《船舶工程》2020,42(8):128-135
裂纹及腐蚀损伤对于浮式生产储油卸油装置(FPSO)结构来说难以避免,这将削弱结构的极限强度,所以研究含裂纹及腐蚀损伤FPSO结构的剩余极限强度意义重大。目前针对裂纹及腐蚀损伤联合作用下FPSO结构剩余极限强度的研究相对欠缺,本文采用非线性有限元分析方法,研究了不同腐蚀及裂纹损伤组合形式下FPSO结构剩余极限强度的衰减规律。结果表明,腐蚀与裂纹损伤均导致极限强度线性衰减,并且腐蚀损伤对极限强度的影响远大于裂纹损伤。研究结果对FPSO结构的设计、维护与延寿具有一定的参考价值。  相似文献   

5.
在设计阶段对船体可能发生的破损情况和剩余强度进行分析。根据分析结果优化结构设计,可以有效地提高船舶破损后的生存概率。以某双壳油船为例,采用SMITH法和非线性有限元法,计算破损后船体的剩余承载能力,比较2种计算方法的计算原理和结果。采用规范计算和直接预报的方式对船体破损后的波浪载荷进行预报。采用确定性方法和可靠性方法对破损船船体结构剩余强度进行评估,给出了实际应用中的使用建议。  相似文献   

6.
洪志涛  肖桃云 《船海工程》2011,40(6):83-86,91
考虑甲板运输船的甲板相对较宽,容易导致尺度比超出规范的限定,因此其强度分析应该特殊考虑.利用有限元分析软件MSC.Patran/Nastran建立舱段有限元模型,对甲板运输船的艏部舱段在总纵外载荷、外部水压力和甲板局部载荷作用下的强度进行直接计算和分析.  相似文献   

7.
系统地讨论了环肋圆柱壳、环肋圆锥壳、锥-柱结合壳以及耐压液舱等结构的稳定性问题.通过大量有限元计算和理论分析,指出了有的解析法公式可用,有的要作修正,有的需要进一步探讨,有的给出了计算方法的具体建议,使正确理解和使用各种稳定性解析公式成为可能.因而本文具有重要的理论和工程应用价值.  相似文献   

8.
从舰船结构强度分析领域的实际工程需要出发,指出舰船结构性能快速评估的作用与意义,结合多种计算机辅助结构设计软件,探讨基于数值仿真的舰船结构性能快速评估方法,同时搭建初步的快速评估系统框架.舰船结构碰撞损伤实例分析表明,该快速评估系统可以同步快速分析各种碰撞损伤以及对应损伤状态下的结构剩余强度,体现出基于结构性能快速评估...  相似文献   

9.
潜艇端部舱壁结构分析   总被引:1,自引:0,他引:1  
范名琦  王永军  刘鑫 《船舶力学》2007,11(4):594-599
端部舱壁结构是潜艇耐压壳体的重要组成部分.该文利用APDL参数化语言编程对影响潜艇端部球面舱壁强度的主要参数进行了讨论和分析.结果表明过渡环两端均采用相切联接时的端部球面舱壁结构的应力水平最低,分析结果同时也证明在进行舱壁结构分析计算时可以忽略梁柱效应的影响.文中的研究结果对潜艇端部舱壁设计具有重要指导作用.  相似文献   

10.
破损舰船剩余强度的可靠性评估方法研究   总被引:3,自引:0,他引:3  
为了合理地评估破损舰船的剩余强度,基于可靠性方法,考虑剩余承载能力和外载荷的不确定性,给出了一种计算破损舰船剩余强度的方法.应用该可靠性评估方法和LR军规的确定性方法对某舰的剩余强度进行评估,计算结果表明两种方法的评估结论相吻合,且采用可靠性方法计算破损舰船的失效概率能更清晰地反映出舰船在破损情况下的残存能力,可以定量地给出海况、船体破损程度、浪向、航速等参数对残存能力的影响,是值得深入研究的方法.同时,还对破口尺寸的变化对剩余强度的影响进行了分析.  相似文献   

11.
基于弯扭耦合的破损船剩余强度评估方法研究   总被引:1,自引:0,他引:1  
破损舰船的剩余承载能力是检验结构设计合理性的一个重要指标。现有的破损舰船剩余承载能力评估主要考察垂向弯矩,缺乏考虑船体在斜浪状态下结构组合变形的综合影响。文章对破损舰船剩余承载能力评估方法进行了研究。在考虑船体组合变形的影响下,建立了弯扭耦合方程。通过非线性有限元计算,确定结构耦合系数,并在此基础上提出了破损舰船的剩余承载能力的可靠性评估方法。  相似文献   

12.
  目的  在大破口损伤下计算船体总纵极限剩余承载能力时,是否计及船舶的浮态变化以及破口位置和大小等非线性耦合因素的影响,是合理评估船舶破损后的总纵极限剩余承载能力时值得深入研究的问题。  方法  以某船船体舯剖面大破口损伤为研究对象,采用Smith方法对船体总纵极限剩余承载能力进行计算分析,重点计算船舶因破损可能导致的不同倾斜角和连续浮态变化的总纵极限剩余承载能力。  结果  结果表明,不考虑船舶浮态变化,仅在船舶正浮状态下扣除大破口结构的计算结果,将会过高估计船舶破损后的总纵极限剩余承载能力。  结论  所用方法较为简便、快捷,可为船舶结构设计以及船舶损伤后的快速决策提供参考。  相似文献   

13.
本文在消化吸收国内外潜艇长舱段结构强度和稳定性研究方法的基础上,总结出长舱段的总体失稳波形和计算方法,在此基础上应用有限元方法对长舱段结构强度和总体稳定性进行数值分析研究,揭示了长舱段结构的力学特性、结构强度和稳定性分布规律等。文中还根据总体失稳压力-框架肋骨惯性矩变化关系曲线搜索框架肋骨最优截面刚度参数,为框架肋骨结构参数选取提供技术参考。  相似文献   

14.
潜艇水下破损后,采用正确的航速对成功挽回潜艇深度和纵倾起着至关重要的作用。本文通过建立潜艇水下破损时的运动模型,并在该模型基础上就航速对破损潜艇动力抗沉效果的影响进行分析,提出了不同破损面积、不同深度情况下分别应采取的增速措施。潜艇深度越大,破损面积越大,所需的抗沉速度就越高,以迅速形成有利纵倾使艇上浮。仿真计算结果表明了所建模型的合理性以及所采取措施的可行性。  相似文献   

15.
对潜艇破损时使用高压气吹除主压载水舱进行了建模,分析破损面积、纵倾以及升降舵等因素对破损潜艇应急上浮的影响,提出根据潜艇破损部位和艇体姿态确定吹除主压载水舱的顺序原则,以及相应的操纵措施,仿真结果表明,所建立的模型是合理的,提出操纵措施是有效的。  相似文献   

16.
在潜艇舵装置的应力分析中,以往采用解析法进行设计计算,由于引入了过多的简化假设,其结果是近似的.本文从基于有限元的模型出发,分析了舵装置在外来载荷作用下系统应力分布以及发生的形变情况,并提出了合理设计的改进措施.  相似文献   

17.
This work deals with the ultimate compressive strength of highly damaged plating resulting from dropping objects, grounding or collision. Extensive static nonlinear finite element analyses are conducted, where several governing parameters are considered. The effect of dent depth as well as dent size is studied. Different dent shapes are considered in order to cover different possible damage scenarios. The toughness modulus is used to measure the capacity of the plate to withstand the applied load with permanent deformation. An expression to estimate the average reduction of ultimate strength of highly damaged steel plates, subjected to compressive loading as a function of the residual breadth ratio is also developed.  相似文献   

18.
The dynamic characteristics of a tunnel structure used to protect underwater power cables, the so-called A-duct, were determined for anchor collisions to provide a procedure for damage assessment and recommendations. The required physical quantities of five target anchors, including the drag coefficient, were obtained using an element-based finite-volume method and ANSYS-CFX software. The terminal velocities of the anchors were then calculated to maximize the colliding kinetic energy. For collision analysis, four parameters (anchor type, ground condition, collision velocity, and collision point) were considered, and the A-duct was modeled based on the Riedel–Hiermaier–Thoma concrete model using ANSYS-Autodyn software. Our analysis results indicated severe damage (D = 1) for most of the gauge points; the damaged area and level increased with the anchor weight. The results showed that the damage was concentrated in the collision area for stock anchors; however, for stockless anchors, damage was also evident in adjacent areas (i.e., damage propagation) due to the anchor head shape as well as the transfer mechanism provided by its reinforcing nets. Accordingly, the 2-ton stock anchor caused more damage at the gauge points near the collision location than the 2-ton stockless anchor. Second, regardless of the ground conditions and rotation angle of the anchor heads with respect to the vertical axis, the damage levels were almost identical. Fixed boundary conditions and non-rotational angle were sufficient for the model used. Third, the damaged areas became smaller when the anchor collision locations deviated from the reference gauge point (P1), i.e., the center of the A-duct. Finally, a comparison of the field-test results to equivalent numerical collision simulations indicated that the size of the predicted and experimentally observed damaged areas were in agreement within 7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号