首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 375 毫秒
1.
针对大型复杂结构振动特性的预测问题,发展了一种子结构方法,并应用于圆柱壳模型的振动特性研究。圆柱壳模型长4.2m,直径0.4m,由5部分组成,并且在第4和第5部分内有一个轴系结构。用子结构方法研究其振动特性时,模型被分为3个子结构,子结构间通过螺栓进行连接。因此,首先介绍了子结构方法及连接处理方式的理论基础,然后通过实验验证了发展方法的正确性,并着重分析了子结构模态综合阶数和连接处理方式对整体结构预测结果的影响规律,最后对比分析了子结构方法与传统有限元法对计算量和内存量的要求。结果表明:发展的子结构方法具有较高的精度,可应用于求解船舶等大型复杂结构的振动特性。  相似文献   

2.
为了能准确、快速分析和预测复杂鼓式制动器结构的动态特性,采用动态子结构综合法-阻抗法对其模态特性进行了研究.基于动态子结构综合法-阻抗法推导了复杂结构动态响应特性关系式,计算了鼓式制动器的模态参数,比较了采用动态子结构综合法和有限元法计算制动鼓的响应时间.结果表明:采用动态子结构综合法-阻抗法是准确、高效的,既能准确计算制动鼓的模态特性,又能快速预测其动态响应特性.  相似文献   

3.
动态子结构法中的非线性特征值计算   总被引:1,自引:0,他引:1  
计算大型复杂结构振动特性的动态子结构法如约束模态法、模态综合超单元法、部件模态综合法及阻抗匹配法等都不可避免地要解非线性特征方程D~*(ω)δ_m~*=0,即动刚度矩阵随结构振动频率而变化。作者采用修正的sturm序列的两分法,求得初始迭代频率值,再代入上述方程,从而保证了该方程的收敛。本方法经过双层框架计算考核,证实其正确性。  相似文献   

4.
本文提出了流固耦合振动一种新的计算方法——组合模态综合法。该方法建立在流体一固体有限元组成的杂交子结构模型基础上,对流体子结构采用约束模态(静力变换模态),同固体子结构以下二种模态:(1)模综超元法中的动力变换模态和(2)Craig 的固定界面模态进行组合,以组合模态作为广义座标对流固杂交子结构的运动方程进行变换获得二种形式的计算方法。本方法中采用了先装配流体子结构后装配固体子结构的技巧,从而消除了流体元的全部自由度和固体子结构的全部内自由度,仅保留固体子结构对接边界自由度,使最后计算特征值的矩阵阶数保持与结构中的模态综合超单元法及 Craig 法的阶数完全相同,大大减少计算机时。通过由弯曲板元和平面膜元的组合板元构成的立体方盒结构以及三维矩形有限元的流固耦合振动计算,获得了与 P.C.Chowdhufy 用整体有限元计算及光测实验一致的数值结果。本方法尤适用于具有大量流固交界面自由度和少量结构对接自由度的船舶流固耦合振动计算,也适用于滨海工程结构和其它工程的这类问题计算。与以往的流固耦合振动计算方法相比,富有实用意义和经济效益。  相似文献   

5.
本文提出了流固耦合振动一种新的计算方法——组合模态综合法。该方法建立在流体-固体有限元组成的杂交子结构模型基础上.对流体子结构采用约束模态(静力变换模态),同固体子结构的两种模态——模综超元法中的动力变换模态和Craig的固定界面模态进行组合,以组合模态作为广义坐标对流固杂交子结构的运动方程进行变换获得两种形式的计算方法。本方法中采用了先装配流体子结构后装配固体子结构的技巧,从而消除了流体元的全部自由度和固体子结构的全部内自由度,仅保留固体子结构对接边界自由度,使最后计算特征值的矩阵阶数保持与结构中的模态综合超单元法及Craig法的阶数完全相同,大大减少了计算机时。 通过曲弯曲板元和平面膜元的组合板元构成的立体方盒结构以及三维矩形有限元的流固耦合振动计算,获得了与P.C.Chowdhury用整体有限元计算及光测实验一致的数值结果。  相似文献   

6.
本文基于模态综合超单元法和模态加速度叠加法的原理,提出了一种求解大型复杂结构动态响应的新方法。利用固定对接主模态,可使结构的副自由度全部精确地缩聚掉,大大降低求解方程的阶数。然后利用模态综合超单元法求结构系统的动态特性,最后用模态加速度叠加法求出有阻尼多自由度结构系统的动态响应值。关于结构系统阻尼如何确定,我们提出了一个新的思想。该思想以子结构为出发点。子结构的阻尼阵与子结构的刚度阵和质量阵成正比,其比例系数由试验或者以往积累的经验所确定。然后利用固定对接技术,将各子结构装配起来,就得到了整个结构系统的阻尼阵。这种处理方法的优点是明显的,因为子结构与整个结构系统相比,其阻尼是比较容易精确地确定的。应用以上提出的方法,与应用有限元技术求结构系统的整体解相比,CUP时间可大大节省,计算效率大为提高,並且具有很高的精度。又因为本文提出的方法是基于动态子结构法,所以大型复杂结构系统的动态响应计算可望在微机上进行。  相似文献   

7.
模态机械阻抗综合法(MMISA)是近年发展起来的一种新的子结构振动分析方法.它能求解含弹性部件系统的振动问题,同时克服了以往在动态子结构分析中由于各子结构自由度数不同而带来的困难,是传统机械阻抗综合法的推广.本文研究分析复杂隔振系统力学建模的模态机械阻抗综合法和其在振动分析中应用,通过浮筏隔振系统算例,讨论了弹性体模型和刚体模型的计算结果.  相似文献   

8.
本文针对大型电机端盖式滑动轴承,利用有限元法对其振动特性进行数值仿真分析。通过模态试验,对轴承的模态参数进行识别和提取,并验证了仿真模型和计算方法的合理性与有效性,进而掌握了大型电机轴承的振动特性及建模方法,为大型电机的低噪声设计奠定了基础。  相似文献   

9.
针对局部振动计算中难以确定局部构件的边界条件和全船振动计算成本过大的问题,引入子结构技术。阐述了子结构技术的基本理论,结合子结构和流固耦合技术,对一艘新型散货船进行了局部和全船振动分析预报。在预报过程中,运用流固耦合方法添加外部附连水和油水舱质量,用子结构界面减缩技术确定局部边界条件,进行局部模态分析,运用计算效率成倍提高的部件模态综合法进行总振动预报。最终,提出了横撑及其船体加强的优化方案。该方案能改良主机和船体结构的振动性能,并满足各自的标准要求。  相似文献   

10.
近几年来,在一些先进的造船工业国家,部件模态综合法在船体结构动态计算中已开始应用。通过将整船分成上层建筑、桅杆、船体梁等若干部分,分别计算各部件的动态特性然后加以综合,可得到整船的结构动态特性。这就有效地解决了计算机容量不足的问题,使绝大部分拥有中小型计算机的企业对这类大型复杂结构的动态计算成为可能。本文根据动力变换原理和超单元的模态分析,导出了一种新的动态子结构法——模态综合超单元法,克服了一般模态综合法与通用有限元法技术相结合的困难,改进了Guyan、Kuhar等人提出的静力、动力缩聚计算的精度。本文提出的模态综合超单元法是将模态综合法与阻抗匹配法结合起来的一种新的动态子结构法,在超单元的缩聚动刚度矩阵中保留了若干阶的固定对接主模态,从而保证了计算精度。在取得超单元的动态缩聚信息后,采用与有限元相同的对接步骤,得到缩聚了的、依赖于系统频率的动刚度矩阵。解此非线性特征方程,即得到所求系统的特征值。本文对非线性特征值的计算原理和步骤也作了专门阐述,这在动态子结构法中是十分关键的一步。根据本方法的计算原理,在我所国产的108计算机上建立了通用程序,并对已有精确解和试验结果的立体双层框架进行了计算考核,结果吻合良好。然后用本方法对5000吨舱口驳模型进行了计算,利用对称和反对称原理计算了具有456个自由度的驳船模型的四分之一部分,将该部分分成四个超单元,每个超单元分别由132个自由度或108个自由度的膜梁组合结构立体舱段组成,用子空间联立迭代法计算得到每个舱段的模态,加以综合后求得整船的动态特性。最后将计算结果与对该模型采用先进的模态识别试验(击锤法)及Molré干涉横向测振试验结果进行了比较,一致性也是满意的。  相似文献   

11.
机械设备隔振系统的子结构建模方法研究   总被引:1,自引:0,他引:1  
基于频响函数(FRF)的子结构方法是分析复杂组合结构的有效方法之一,其基本原理是使用单个非耦合的分量FRF通过阻抗或导纳方程构成总的系统响应。通过采用自由速度描述机械设备的激励特性,采用四端参数描述隔振器的阻抗特性,建立了机械设备隔振系统完整的子结构模型。经实测,获得了设备机脚的自由速度以及基座等结构的导纳矩阵,计算获得设备弹性安装后机脚和基座安装点的响应,并与测试结果进行了比较。分析表明,结果吻合较好,计算值与测试值的偏差基本在3 dB以内,能够满足工程要求。  相似文献   

12.
本文用流体边界元结合結构模态综合技术对大型结构的流固耦合问题的计算方法进行了研究。基于对用常数边界元计算附连水质量的物理意义的研究,并结合结构部分的计算,提出了一种假设的模态——拟湿模态。数值计算表明,本文的理论结果有足够的精度。  相似文献   

13.
研究了斜拉桥发生索梁耦合共振的机理与条件,充分考虑了拉索振动的几何非线性、垂度与桥面刚度的影响,建立了索梁耦合振动的数值计算模型。计算结果表明,拉索发生大幅振动与斜拉桥主梁的刚度以及拉索本身的振动特性有关,拉索可能在主梁振动的作用下发生1∶1的主共振或2∶1的主参数共振。根据计算结果讨论了这两种共振的性质,提出了抑制索梁耦合共振的方法。  相似文献   

14.
Recently, the fatigue failure of ship rudders owing to vortex-induced vibration has increased as commercial ships become faster and larger. However, previous methods are inappropriate for fatigue failure prevention owing to the lack of fluid–structure interaction considerations. This study aims to develop a fatigue damage prediction method that can be applied at the design stage to prevent fatigue failure of ship rudders under vortex-induced vibration. The developed prediction method employed the fluid–structure interaction (FSI) method to properly consider the fluid–structure interaction and implemented orthonormal mode shapes to reflect the complex geometry and boundary conditions of the ship rudders. For validation, vortex-induced vibration of the hydrofoil model was obtained using the developed method, and the prediction results matched well with the experimental results. Then, the fatigue damage of the ship rudder model under vortex-induced vibration was predicted using the developed method, and their characteristics are discussed. The stress distribution obtained using the developed method matched well with the geometrical characteristics of the ship rudders. The potential for fatigue failure due to the resonance of vortex-induced vibration was expected by comparing the stress distributions for various flow velocities to the S–N curves provided by the DNV classification.  相似文献   

15.
低质量-阻尼因子圆柱体的涡激振动预报模型   总被引:6,自引:1,他引:5  
本文考查了在均匀来流中作横向振荡的圆柱体与周围流体之间的能量转移,由此建立了基于受迫振荡实验数据的弹性支撑圆柱体在均匀流中的涡激振动响应预报模型.根据此模型,分析了低质量-阻尼因子圆柱体的涡激振动响应特性.就水中圆柱体涡激振动响应特性相关的几个关键性问题进行了深入的讨论,包括响应振幅的决定因素、附加质量对锁定范围及响应频率的影响.正确理解这些问题对于深水立管涡激振动响应的有效预报至关重要.  相似文献   

16.
李彬  张磊  曹跃云 《船舶力学》2020,(1):98-107
为了分析非线性耦合因素与叶片振动对转子-轴承系统动力学特性影响,文章将叶片模化为悬臂梁结构并利用假设模态法离散简化,建立了阿尔福德(Alford)力作用下计及叶片弯曲振动的系统动力学模型。采用Runge-Kutta法对非线性振动微分方程进行数值求解,通过系统响应的分岔图、时间历程图与频谱图、轴心轨迹图、Poincaré映射图和相图研究了叶片弯曲变形以及Alford力对系统的非线性动力学行为的影响。结果表明:叶片振动使系统的不稳定区域提前,转子发生混沌运动的转速范围增大;叶尖气隙引起的Alford力使系统的运动状态变得更为复杂,油膜非线性更加明显。  相似文献   

17.
以某3 100 TEU巴拿马型集装箱船为例,建立集装箱船体全船结构三维有限元动力学分析的计算模型,对船体结构进行实特征值、有阻尼瞬态响应的计算分析;采用Lanczos方法计算特征值;采用模态方法进行瞬态响应分析.分析结果表明,该船在运营过程中容易出现扭转振动,需要对驾驶甲板的侧翼结构进行修改设计,但其振动强度在总体上是...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号