共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高夜间行车的安全性,提出了一种基于单目视觉的夜间前方车辆检测方法。该方法利用最大类间方差法自动确定阈值,从背景中抽取出前车尾灯,并根据HSV颜色空间的颜色阈值剔除非尾灯目标,利用Kalman滤波方法将图像分为跟踪区域和检测区域,在两个区域内分别进行尾灯配对,根据尾灯对之间特征相似性的比较,剔除误检的车辆;跟踪区域中漏检的车辆,根据前一帧检测的车辆位置和正确抽取的尾灯来估计,以实现车辆检测。实验结果表明,该算法能准确检测夜间前方车辆,有效降低漏检率和误检率。 相似文献
2.
本文中以深度置信网络为理论基础,提出了一种多源信息的前方车辆检测方法。首先将毫米波雷达和摄像机进行联合标定,确定两个传感器坐标系之间的转化关系。然后通过对毫米波雷达数据进行预处理完成前方障碍物的标签分类,获得前方车辆目标和其他类障碍物的数据。接着利用深度置信网络对数据进行训练,完成前方车辆的初识别。最终根据常见车型宽度和高度的统计数据获得前方车辆识别的验证窗口。实验结果表明,采用所提出方法前方车辆识别的正确率为91.2%,单帧图像的总处理时间为37ms,有效地提高了系统实时处理速度,尤其对阴天、夜间、轻雨或雾霾等恶劣的道路环境中的车辆有良好的检测效果,能满足汽车辅助驾驶对于准确性和稳定性的要求。 相似文献
3.
4.
5.
6.
7.
针对在嵌入式设备上部署神经网络模型存在受限于设备体积与计算性能的影响而难以保证神经网络模型的推理实时性的问题,提出了一种基于YOLOv5-nano的前车检测改进方法(HS-YOLO)。首先,采用硬拟合函数h-swish来取代SiLU激活函数,在激活关系相似的情况下提高模型推理速度;此外,引入SIOU边界框回归损失来替代CIOU损失,提高模型的训练速度与推理精度。为进一步验证改进模型的性能,使用SSD、YOLOv4-tiny、基础模型YOLOv5-nano与改进的HS-YOLO网络在相同训练条件下进行训练,得到最优模型并在测试集上进行推理测试。结果表明:HS-YOLO模型的精确率、召回率及AP0.5较原模型YOLOv5-nano分别提升了0.76%、0.43%、0.41%;在推理速度方面,HS-YOLO模型的单张图片推理耗时为7.8 ms,实时推理帧数为128 FPS,在所有模型中表现最优,较原模型分别提高了0.7 ms和10 FPS。 相似文献
8.
9.
10.
为解决利用雷达回波实现静止目标和运动目标的准确识别这一驾驶辅助系统的关键技术问题,本文中基于地面目标运动状态转移机理提出了一种基于时间窗的汽车前方静动目标状态分类方法。在地面静动目标运动状态与转移机理分析的基础上,将目标分为静止目标、同向运动目标、反向运动目标、起停目标和未分类目标等5类,建立了在固定时间窗内的目标运动状态的转移状态机模型,并确定了目标状态转移的条件阈值和时间窗长度,最终在驾驶辅助试验车上进行了前方同向或反向行驶车辆、树木等静止物体和制动停车车辆等各种典型工况下的识别试验,为实现基于毫米波雷达的自适应巡航与自动紧急制动的驾驶辅助系统的工程化提供了技术支撑。 相似文献
11.
为提高自动驾驶技术中的车辆定位精度,提出了一种基于GRI的多车协同定位方法。采用该方法时,一辆车依据GPS定位信息对本车位置进行估计,再通过车车通信接收周围车辆发来的根据其GPS测定的位置及其与该车相对位置而估计的该车位置。将这些位置信息进行融合,通过一定的修正,估算出该辆车更为精确的位置。最后应用MATLAB对所提出方法进行仿真,以模拟多车直行跟随和换道行驶场景。结果表明,该方法合理、可行,能有效提高车辆的定位精度,具有广阔的工程应用前景。 相似文献
12.
13.
14.
本文中提出了一种基于改进的Sage-Husa自适应扩展卡尔曼滤波的车辆行驶状态估计算法。首先建立了非线性3自由度车辆估算模型和Dugoff轮胎模型。接着通过对纵向加速度、侧向加速度、横摆角速度和转向盘转角等低成本传感器信号的信息融合,实现对车辆行驶状态的准确估计。最后应用CarSim和Matlab/Simulink联合仿真对算法进行验证。结果表明:基于改进的Sage-Husa自适应扩展卡尔曼滤波的估计算法能比扩展卡尔曼滤波算法更准确、稳定地估计车辆行驶状态。 相似文献
15.
16.
为实现不同驾驶工况下精确的车速与轨迹跟踪,提出了一种驾驶机器人车辆多模式切换控制方法。通过分析驾驶机器人操纵自动挡车辆踏板与转向盘的运动,建立了驾驶机器人加速与制动机械腿和转向机械手的运动学模型和车辆纵横向动力学模型。在此基础上,设计了加速/制动机械腿切换控制器、模糊PID/模糊PID+Bang-Bang车速切换控制器和模糊PID/模糊PID+Bang-Bang转向切换控制器。加速/制动机械腿切换控制器以目标车辆加速度为切换规则,协调控制加速和制动机械腿,车速切换控制器以车速误差作为Bang-Bang控制器的模式决策准则和模糊PID控制器的输入,转向切换控制器以轨迹跟踪侧向误差作为Bang-Bang控制器的模式决策输入,并以当前与下一个控制时刻横摆角速度之差作为模糊PID控制器的输入。仿真和试验结果验证了所提出方法的有效性。 相似文献
17.
18.
蒋朝阳兰天然郑晓妮高九龙叶学通 《汽车工程》2022,(12):1809-1817
可靠的定位与导航是实现自动驾驶的先决条件。单车视觉同时定位与建图(SLAM)技术能够在GNSS拒止的情况下实现车辆的定位,但累积误差会随运行时间逐渐增加,难以持续准确完成定位任务。通过多车协同视觉SLAM可以提升定位效果。本文提出了一种鲁棒、轻量化的分布式多车协同视觉SLAM系统,该系统以ORBSLAM2作为视觉里程计,利用NetVLAD全局图像描述子实现多车间共视区域识别和数据关联;提出了一种基于数据相似性和结构一致性的方法,实现多车间闭环离群值剔除;提出了一种分布式位姿图优化方法,提高多车协同定位精度。经过自主搭建平台所采集的真实数据以及KITTI数据集测试,该系统相较于已有的主流视觉SLAM算法以及协同SLAM算法均具有更高的定位精度。 相似文献
19.
20.
基于视觉的车辆检测作为辅助驾驶系统的输入,对智能车辆预警和决策起着重要的作用。针对目前传统深度卷积神经网络在基础网络设计和物体检测网络构建的不足,提出一种对经典的深度残差网络进行改进方法,提出带局部连接的残差单元,并以此构建带局部连接的残差网络;同时,提出基于共享参数的多分支网络和双金字塔语义传递网络形式,提升不同语义级别特征融合前的语义级别,以及实现深度融合不同分辨率特征图的语义。经过测试,车辆的检测准确率最高达到95.3%,且具备较高的实时性和环境适应性。 相似文献