首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 197 毫秒
1.
轮轨接触是高速列车运营安全中的关键问题,研究轮轨三维非线性静态接触应力及其影响因素是解决这些问题的关键。利用有限元分析软件 ANSYS,建立三维轮轨有限元模型,轮轨之间建立面面接触单元,对 TB锥形踏面和CHN60钢轨静态接触进行计算,分析轮重和材料模型因素对接触斑形状和面积的影响,并与 Hertz理论解进行对比,进而分析平均接触应力、轮轨 Mises应力的影响,再利用弹簧单元模拟弹性地基,考虑地基刚度因素对轮轨静态法向接触应力的影响。结果表明:轮轨接触斑面积和形状是轮轨接触应力的主要影响因素;轮轨接触斑形状与 Hertz理论的椭圆接触斑存在差异,随着轮重增加,接触斑面积的差距逐渐越大,导致轮轨平均接触应力不同;弹性材料的接触斑面积小于弹塑性材料接触斑面积;轮轨接触不可避免的出现塑性变形;法向接触应力随着地基刚度减小而减小,但过小的地基刚度会增加地基变形,对列车长期运行不利。  相似文献   

2.
从滚动接触理论、试验与数值模拟三方面概述了轮轨关系研究现状,强调了轮轨滚动接触行为中轮轨材料动态力学性能的影响;总结了轮轨材料静动态力学性能与本构关系的相关成果;介绍了由车轮扁疤、踏面剥离/剥落、车轮多边形等典型踏面缺陷引起的轮轨动态响应研究,分析了车轮踏面缺陷对轮轨滚动接触行为和列车系统动力学性能的影响,以及车轮踏面缺陷的形成原因、影响规律与演变机理,重点关注了轮轨动态效应对高速轮轨滚动接触行为的影响;概括了车轮踏面缺陷的检测技术与减缓和防治措施。研究结果表明:车轮踏面缺陷致使轮轨冲击力显著增大,导致轮轨部件损伤和车体异常振动,严重影响车辆-轨道系统部件的使用寿命和列车动力学性能,甚至威胁列车运行安全;车轮踏面缺陷的成因与机理仍需进一步探究,车辆异常制动、轮轨低黏着状态均会导致车轮扁疤的产生,轮轨材料特性、轮轨间接触载荷、轮对共振、列车制动系统性能与线路运行条件/环境等均是导致车轮踏面发生剥离的主要影响因素,轮轴共振、轮轨摩擦振动、车轮制造镟修工艺等均与车轮多边形的形成有密切联系;改善轮轨材料的性能,控制轨道系统的支撑刚度/阻尼及轮轨间摩擦因数等均是抑制车轮踏面缺陷产生的有效途径。  相似文献   

3.
轮轨接触几何参数匹配对应力值影响的探讨   总被引:1,自引:3,他引:1  
轮轨接触几何参数的匹配优劣直接影响着轮轨接触应力值的大小。文中探讨了货车不同车轮踏面、不同轨底坡的轮轨匹配问题,分析了轮对模移对轮轨接触应力值的影响。提出了推广使用轮轨接触应力的数值计算方法。  相似文献   

4.
随着车辆运行里程的增加,车辆稳定性由于轮轨匹配关系的不断恶化而下降.通过镟修不同轮缘厚度车轮型面改善车辆运行性能,但不同轮缘厚度的车轮型面与钢轨匹配下的动力学性能都是未知数.根据LMB系列4种不同轮缘厚度踏面和CHN60匹配,对轮轨接触点位置的变化、接触区域分布进行仿真计算,通过计算接触宽度、接触集中度,分析由于轮对型...  相似文献   

5.
为了分析地铁车辆常用的LM型踏面、内侧距1 358 mm和1 360 mm的S1002型车轮踏面分别与60 kg/m钢轨匹配特性.进行了轮轨接触几何、非赫兹滚动接触、车辆轨道耦合动力学计算.轮轨接触分析表明,LM轮轨接触点能够均匀分布于钢轨型面,轮对等效锥度随轮对横移呈增大关系,接触斑面积偏小、最大等效接触应力偏大、磨...  相似文献   

6.
一种轮轨接触几何算法   总被引:6,自引:1,他引:6  
提出并实现一种轮轨接触几何算法,可以检测铁道车辆系统动力学仿真在线计算时轮对与钢轨的刚性单接触斑、多接触斑和跳离情形.所得刚性接触斑可以为Hertz理论提供刚性穿透量和曲率,为非Hertz理论提供接触区域的法向间隙,为动力学仿真提供接触中心位置和法向方向.轮对与钢轨的计算机三维图形显示表明该算法是有效的.该算法已用于开发空间耦合的铁道车辆系统动力学仿真软件.  相似文献   

7.
高速道岔辙叉区轮轨接触不平顺   总被引:4,自引:2,他引:2  
为揭示高速道岔辙叉区不平顺特性,通过分析心轨、翼轨的结构特点,采用最小距离搜索法,建立了辙叉区轮轨接触计算模型,并以350 km/h客运专线42号高速道岔为例,分析了不同藏尖结构和车轮踏面的轮轨接触不平顺规律.结果表明:不平顺最大值出现在轨距测量点由翼轨向心轨转移处和轮轨接触点由翼轨向心轨转移处;同一种藏尖结构和车轮踏面,横向不平顺远大于竖向不平顺;采用水平藏尖结构并分别在心轨顶宽10.0,15.0,35.0 mm处降低10.0,3.0,0.0 mm,能有效控制不平顺;随着列车运行和车轮磨耗,不平顺会出现横向增大、竖向减小的现象.  相似文献   

8.
随着车辆的运行,车轮踏面会出现不同程度的磨耗,为研究磨耗状态下车轮与钢轨之间的静态匹配性能,利用轮轨接触几何关系和非赫兹滚动接触理论,计算不同磨耗程度的车轮对轮轨接触几何参数和接触力学特性的影响,并与CHN60钢轨的计算结果进行对比.分析结果表明:轮对横移小于4 mm时,车轮磨耗程度越大,车轮上接触点的横向分布宽度越大,60N钢轨的接触点横向分布宽度明显小于CHN60钢轨,对提高车辆运行稳定性有利;车轮磨耗程度越大,轮轨磨耗指数越大,60N钢轨的轮轨磨耗指数较小,有利于轮轨廓形的保持能力.车轮磨耗程度越大,位于表面滚动接触疲劳区的范围越大,相比CHN60钢轨,60N钢轨位于表面滚动接触疲劳区的情况较少,相同条件下,能够减少轮轨滚动接触疲劳伤损的发生.   相似文献   

9.
研究了含内部裂纹的磨耗型踏面铁路车轮与60 kg/m钢轨的接触关系问题.建立了存在不同尺寸及角度内部裂纹的轮轨接触三维有限元模型.通过计算,获得了不同情况下裂纹周边以及轮轨接触区的Mises应力分布规律.分析结果表明:当裂纹越靠近接触区时,裂纹周边应力越大;裂纹与踏面角度为45°时,裂纹最容易扩展.  相似文献   

10.
利用轮轨型面测量仪测量了SS4机车JM3型磨耗车轮型面和小半径曲线钢轨型面,采用样条曲线拟合方法获得了车轮几何型面,选取5种不同磨耗程度的车轮型面,建立了三维轮轨接触有限元模型,计算了轮轨接触斑面积和接触应力.计算结果表明:4型车轮与磨耗钢轨接触时,接触斑面积最小,仅为183 mm2,Von Mises应力最大值为1 ...  相似文献   

11.
以CRH6A城际动车组为研究对象,基于实测磨耗后轮轨型面,利用多体动力学软件Universal Mechanism建立了车辆动力学模型,计算了通过曲线时的轮轨力与轮对位置参数;在非线性有限元软件ABAQUS中,基于任意拉格朗日欧拉方法建立了轮轨三维滚动接触模型,计算了轮轨接触应力特性和滑移特性;基于Archard磨损模型,提出一种车轮表面接触区域磨损速率快速计算方法,研究了新轮、磨耗初期车轮和磨耗到限车轮与新轨、磨耗后钢轨相互作用下,车轮通过曲线时接触区域磨损特性。研究结果表明:新轮和磨耗后钢轨、磨耗初期车轮和新轨、磨耗到限车轮与新轨相互作用下最大法向接触应力分别达到了2 017、1 803和1 668 MPa,比新轮和新轨、磨耗初期车轮和磨耗后钢轨、磨耗到限车轮和磨耗后钢轨3种作用下最大接触应力高出20%以上;新轮和磨耗后钢轨、磨耗初期车轮与新轨、磨耗初期车轮和磨耗后钢轨相互作用下,轮轨间出现两点接触、三点接触,甚至四点接触;在多点接触下,轮缘处接触点表现出应力集中且磨损速率较高的特点,最大磨损速率分别达到2.60×10-5、3.82×10-5、3.52×10-5 mm·s-1,远高于新轮和新轨、磨耗到限车轮和新轨、磨耗到限车轮和旧轨3种作用下的磨损速率;磨耗到限车轮和新轨与磨耗钢轨相互作用下的磨损速率均相对较小,说明在磨耗后期的车轮磨耗相对较小;轨角磨耗会严重加剧新轮的轮缘磨耗,且磨耗初期车轮具有较高的轮缘磨损速率,应将车轮镟修周期和钢轨打磨周期相协调,并通过涂油等方式降低磨耗初期的轮缘磨损。  相似文献   

12.
重载铁路及客货共线铁路运营条件下,轮轨磨耗问题尤为突出.为了有效减缓轮轨磨耗发展,以不同接触条件下轮轨廓形共形度最优为原则,设计目标函数及约束条件,建立钢轨廓形非线性优化数学模型,并基于序列二次规划法进行求解,提出60 kg/m钢轨廓形的优化方案;从轮轨接触几何关系、车辆-轨道系统动力作用、磨耗的角度对优化廓形的优化效果进行了对比分析.结果表明:1)所提出的60 kg/m钢轨优化廓形相对于原始廓形使目标函数值降低了50%,与LM车轮廓形具有更高的共形度水平;2)优化廓形的轮轨接触点分布更为均匀,在轮对横移量较小的条件下轮径差更小,在轮对横移较大的条件下轮径差更大;3)优化廓形对车辆运行安全性和平稳性无显著影响,可有效增大轮轨接触面积达11.24%,降低接触应力达20.42%,减缓轮轨磨耗发生发展速率.  相似文献   

13.
轮轨接触关系计算方法   总被引:3,自引:1,他引:2  
为了在车辆-轨道耦合动力学仿真中能更真实反映轮轨接触状态, 利用迹线法原理和轨廓分区法, 在考虑轮对的横移、浮沉、摇头、侧滚和左右钢轨的横移、浮沉、侧滚的条件下, 分别计算轨顶和轨侧区域与车轮的最小轮轨间隙量, 以此来判断轮轨的真实接触状态: 正常的一点接触、非正常的一点接触、两点接触和车轮完全悬浮, 并根据非线性赫兹接触理论分别求得两接触点处的轮轨法向力。轮轨接触关系仿真结果表明根据轮轨接触关系计算方法得出的轮轨接触关系符合车辆在实际线路上的运行状态。  相似文献   

14.
针对过度磨耗钢轨的打磨,提出一种以圆弧切点为关键参数的钢轨廓形设计方法;以轮轨接触位置为优化区域,以钢轨磨耗和打磨材料去除量作为优化目标函数,以廓形边界范围、凹凸性、脱轨系数和轮轨横向力为约束条件,建立磨耗钢轨打磨设计廓形多目标函数;集成多元模拟退火寻优算法进行求解;为了得到能代表重载线路曲线区段的钢轨廓形,作为优化的输入数据,采用最小二乘距离算法、算术平均算法、加权平均算法和散点重构算法得出4种钢轨代表廓形;使用Pearson相关系数、Kendall秩相关系数和Spearman秩相关系数计算出4种算法的钢轨代表廓形与实测廓形接触点概率分布曲线的相关性,取相关性最高的代表廓形为等效重载线路曲线区段的实际廓形;对某重载线路过度磨耗钢轨的经济性打磨廓形以及采用圆弧型廓形设计方法的优化廓形进行分析。分析结果表明:优化廓形与现场打磨廓形相较,截面廓形磨削量减少69.56 mm2,下降64.98%,脱轨系数小幅增大,轮轨横向力基本不变,轮对横移变化较小,曲线通过性能相近,80万次通过量下的磨耗面积增加2.19 mm2,钢轨的磨耗速率略微增大,整体仍延长了钢轨寿命。  相似文献   

15.
为研究岔区轮轨匹配关系和经典轮轨接触理论对岔区的适用性,建立了岔区轮轨接触有限元模型,编写了数种岔区法向力及切向力计算程序.以18号高速道岔转辙区及辙叉区典型断面为例,在法向对比了赫兹、半赫兹、Kalker三维非赫兹滚动接触理论与有限元模型在接触斑面积和接触应力上的差异,切向对比了基于赫兹和半赫兹的FASTSIM算法、Polach模型和CONTACT程序在不同工况下的蠕滑力差异.计算结果表明:有限元模型考虑了轮轨材料应力应变特性,更接近实际运用工况,赫兹、半赫兹、Kalker三维非赫兹与有限元法接触斑面积分别最大相差50.42%、17.83%和24.78%,最大接触应力相差60.28%、25.25%和32.37%;各工况下4种切向力模型蠕滑力随蠕滑率的变化趋势相同,同一工况下基于赫兹和半赫兹的FASTSIM算法和Polach模型与CONTACT计算结果最大相差8.08%、5.19%、9.70%;综合岔区轮轨法向、切向计算精度和计算效率,半赫兹接触理论结合FASTSIM算法在岔区大批量的数据处理中更具优势.  相似文献   

16.
高速铁路无缝钢轨断缝瞬态冲击行为分析   总被引:1,自引:1,他引:0       下载免费PDF全文
无缝线路钢轨焊缝及其热影响区在温度力作用下可能发生钢轨折断形成断缝. 为了研究钢轨折断对列车运营安全的影响,对轮轨接触受力特性及其材料高频动态响应进行了分析. 首先,建立了ANSYS/LSDYNA三维轮轨瞬态滚动接触有限元模型;然后,根据不同速度轮轨力时域响应规律,选择了合适的模型计算工况,并且通过计算轮轨接触受力特性和材料高频动态响应,分析了车轮跨越断缝的安全问题;最后,通过小波变换获取了车轮跨越断缝时轮轨力的频域分布. 结果表明:断缝处轮轨高频冲击力峰值随断缝长度变化先减小后增大,转折点处断缝长度与行车速度负相关;车轮通过断缝时,钢轨最大剪切应力超过材料破坏极限,易导致钢轨材料脆断;轮轨力时频图中存在两个特殊频率成分,分别对应高频冲击荷载(1 500 Hz左右)及二次冲击荷载(450 Hz左右),断缝长度对轮轨力频域分布影响较小.   相似文献   

17.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。  相似文献   

18.
为设计可提升列车小半径曲线通过性能的钢轨非对称打磨目标廓形,对中国现有CN60钢轨廓形进行了几何推导;以钢轨廓形几何参数作为设计变量,以车辆系统多体动力学指标作为综合目标函数,考虑钢轨打磨约束条件,提出了一种针对小半径曲线钢轨非对称打磨廓形的多目标数值优化模型;基于差分进化算法编写了相应的数值计算程序,并选择合理的计算参数求解了优化模型;根据实际线路参数分析了优化后钢轨打磨廓形的轮轨接触几何特性,并验证了列车的小半径曲线动力学性能。研究结果表明:提出的优化方法具有较快的计算速度,优化模型仅迭代了97次即可获得理想的钢轨打磨廓形;非对称打磨使内外钢轨具有差异性的打磨位置与打磨深度,将轮轨对中位置向轨道内侧移动了约10 mm,且不会改变轮缘处的轮轨匹配特性,有效增大了轮对横移10 mm范围内的轮对滚动圆半径差与轮轨接触角差,降低了列车在通过小半径曲线时的轮对横移、轮轨横向力、脱轨系数和轮重减载率,提高了转向架的横向稳定性和轮轨磨耗性能;虽然该打磨方式获得的钢轨廓形增大了轮轨接触应力,但并不会引起轮轨塑性变形。由此可见,该设计方法为提高列车的中小半径曲线通过能力提供了一种可行途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号