共查询到20条相似文献,搜索用时 0 毫秒
1.
The Mercator global ocean operational analysis system: Assessment and validation of an 11-year reanalysis 总被引:1,自引:0,他引:1
Nicolas Ferry Elisabeth Rmy Pierre Brasseur Christophe Maes 《Journal of Marine Systems》2007,65(1-4):540
This paper presents Prototype Système 2 Global (PSY2G), the first Mercator global Ocean General Circulation Model (OGCM) to assimilate along-track sea level anomaly (SLA) satellite data. Based on a coarse resolution ocean model, this system was developed mainly for climatic purposes and will provide, for example, initial oceanic states for coupled ocean-atmosphere seasonal predictions. It has been operational since 3 September 2003 and produces an analysis and a two-week forecast for the global ocean every week. The PSY2G system uses an incremental assimilation scheme based on the Cooper and Haines [Cooper, M., Haines, K., 1996. Data assimilation with water property conservation. J. Geophys. Res., 101, 1059-1077.] lifting–lowering of isopycnals. The SLA increment is obtained using an optimal interpolation method then the correction is partitioned into baroclinic and barotropic contributions. The baroclinic ocean state correction consists of temperature, salinity and geostrophic velocity increments and the barotropic correction is a barotropic velocity increment. A reanalysis (1993–2003) was carried out that enabled the PSY2G system to perform its first operational cycle. All available SLA data sets (TOPEX/Poséïdon, ERS2, Geosat-Follow-On, Jason1 and Envisat) were assimilated for the 1993–2003 period. The major objective of this study is to assess the reanalysis from both an assimilation and a thermodynamic point of view in order to evaluate its realism, especially in the tropical band which is a key region for climatic studies. Although the system is also able to deliver forecasts, we have mainly focused on analysis. These results are useful because they give an a priori estimation of the qualities and capabilities of the operational ocean analysis system that has been implemented. In particular, the reanalysis identifies some regional biases in sea level variability such as near the Antarctic Circumpolar Current, in the eastern Equatorial Pacific and in the Norwegian Sea (generally less than 1 cm) with a small seasonal cycle. This is attributed to changes in mean circulation and vertical stratification caused by the assimilation methodology. But the model's low resolution, inaccurate physical parameterisations (especially for ocean–ice interactions) and surface atmospheric forcing also contribute to the occurrence of the SLA biases. A detailed analysis of the thermohaline structure of the ocean reveals that the isopycnal lifting–lowering tends to diffuse vertically the main thermocline. The impact on temperature is that the surface layer (0–200 m) becomes cooler whereas in deeper waters (from 500 to 1500 m), the ocean becomes slightly warmer. This is particularly true in the tropics, between 30°N and 30°S. However it can be demonstrated that the assimilation improves the variability in both surface currents and sub-surface temperature in the Equatorial Pacific Ocean. 相似文献
2.
Eric A. DAsaro 《Journal of Marine Systems》2008,69(3-4):233
Observations of vertical velocities in deep wintertime mixed layers using neutrally buoyant floats show that the convectively driven vertical velocities, roughly 1000 m per day, greatly exceed the sinking velocities of phytoplankton, 10 m or less per day. These velocities mix plankton effectively and uniformly across the convective layer and are therefore capable of returning those that have sunk to depth back into the euphotic zone. This mechanism cycles cells through the surface layer during the winter and provides a seed population for the spring bloom. A simple model of this mechanism applied to immortal phytoplankton in the subpolar Labrador Sea predicts that the seed population in early spring will be a few percent of the fall concentration if the plankton sink more slowly than the mean rate at which the surface well-mixed layer grows over the winter. Plankton that sink faster than this will mostly sink into the abyss with only a minute fraction remaining by spring. The shallower mixed layers of mid-latitudes are predicted to be much less effective at maintaining a seed population over the winter, limiting the ability of rapidly sinking cells to survive the winter. 相似文献
3.
The influence of intrusions of eastern North Atlantic central water (ENACW) in the north and northwestern Iberian shelf on phytoplankton composition and abundance and on particle-size distributions of seston was analyzed using data collected on three extensive cruises during spring 1991 and 1992. Water with temperature and salinity values between 12.20 and 13.86 °C and between 35.66 and 35.98 psu, respectively, characteristics of the subtropical type of ENACW (ENACWt), was detected in the upper 100 m of the water-column in all cruises, but particularly in the western coast in 1992. The highest salinity values of this water were found near the surface (0–100-m depth) and in early spring 1992, while minimum salinity values, and also minimum geographical extension, were found in late spring in both years. Phytoplankton blooms concentrated in frontal areas between different water types, with maximum intensity and extension in early spring.Using temperature and salinity characteristics, samples were classified in four groups corresponding to the major water types found in the region: Bay of Biscay central water (BBCW), two segments of ENACW of different salinity and surface water influenced by continental runoff. This classification was significantly confirmed by three independent discriminant analyses using hydrographic and chemical (dissolved nutrients and chlorophyll) variables, phytoplankton species abundance variables and particle-size concentration of seston variables. Phytoplankton blooms related to the presence of saline waters were characterized by the dominance of either chain-forming diatoms or a mixture of diatoms and phytoflagellates and high concentrations of seston. The diatom species dominating in saline waters were typical of upwelling-induced blooms occurring generally during summer. Blooms occurring in waters influenced by runoff also contained diatoms but in lower numbers than those of saline waters. Nutrients were not exhausted in the region, suggesting that phytoplankton populations were still in active growth. These results are interpreted taking into account the known variability in water-mass formation and in the poleward current driving ENACWt along the shelf, and indicate that saline intrusions are a major feature affecting the distribution and composition of plankton in the spring in the southern Bay of Biscay, thus enlarging to a wider spatial scale their reported influence on the pelagic ecosystem. 相似文献
4.
The effect of precession-induced changes in the Mediterranean freshwater budget on circulation at shallow and intermediate depth 总被引:1,自引:0,他引:1
The Neogene marine sedimentary record of the Mediterranean basin is characterised by the regular occurrence of organic-rich layers or sapropels. These sapropels are known to correlate with the precession cycle: their deposition coincides with precession minima. This correlation is thought to be caused to a large extent by a precession-induced increase in the amount of freshwater reaching the Mediterranean Sea. In the literature, various sources of this extra freshwater have been identified and different mechanisms as to how this freshwater flux leads to sapropels have been proposed. In this study we investigate the effects of precession-induced changes in the freshwater budget using a regional ocean general circulation model of the Mediterranean Sea. Emphasis is on the effects at the surface and at intermediate depth. The forcing of the ocean model is adjusted to precession minimum conditions on a parameter by parameter basis. Novel to our approach is that the value of the required adjustments is taken from a global coupled climate model with which experiments have been performed for the present day (close to precession maximum) and precession minimum. With the ocean model we focus on the extent to which extra runoff from either south (specifically: the river Nile) or north and changes in net precipitation over the sea itself lead to a more stable stratification; this we judge by the associated reduction of the sea surface salinity and mixed layer depth in the regions of intermediate and deep water formation. Our main finding is that the effects of (1) increased discharge of the rivers coming from the north, and (2) the increase in net precipitation over the sea itself, are of equal or greater importance than that of increase in Nile discharge. 相似文献
5.
Currently there are different approaches to filter algorithms based on the Kalman filter. One of the most used filter algorithms is the Ensemble Kalman Filter (EnKF). It uses a Monte Carlo approach to the filtering problem. Another approach is given by the Singular Evolutive Extended Kalman (SEEK) and Singular Evolutive Interpolated Kalman (SEIK) filters. These filters operate explicitly on a low-dimensional error space which is represented by an ensemble of model states. The EnKF and the SEIK filter have been implemented within a parallel data assimilation framework in the Finite Element Ocean Model FEOM. In order to compare the filter performances of the algorithms, several data assimilation experiments are performed. The filter algorithms have been applied with a model configuration of FEOM for the North Atlantic to assimilate the sea surface height in twin experiments. The dependence of the filter estimates on the represented error subspace is discussed. In the experiments the SEIK algorithm provides better estimates than the EnKF. Furthermore, the SEIK filter is much cheaper in terms of computing time. 相似文献
6.
Ernesto Napolitano Temel Oguz Paola Malanotte-Rizzoli Aysen Yilmaz Emilio Sansone 《Journal of Marine Systems》2000,24(3-4)
The biological production characteristics of the Rhodes and western Ionian basins of the eastern Mediterranean are studied by a one-dimensional, coupled physical–biological model. The biological model involves single aggregated compartments of phytoplankton, zooplankton, detritus as well as ammonium and nitrate forms of the inorganic nitrogen. It interacts with the physical model through the vertical eddy diffusivity which is calculated using the Mellor–Yamada level 2.5 turbulence parameterization. The model simulations demonstrate the importance of the contrasting physical oceanographic characteristics of these two basins on affecting their yearly planktonic structures. The annual primary production in the Rhodes basin is estimated as 97 g C m2 yr−1 which is comparable with the northwestern Mediterranean. The western Ionian basin, on the contrary, possesses only 10% of the Rhodes' productivity and therefore represent a most oligotrophic site in the eastern Mediterranean. The Rhodes basin reveals a strong bloom in early spring, typically in March, a weaker bloom in early winter, typically in January, and a subsurface production below the seasonal thermocline during summer. This structure is slightly modified in the western Ionian basin, and the early winter and early spring blooms are merged to cover the entire winter. These results are supported favorably by the available observations both in their magnitudes and timing. 相似文献
7.
There is an increasing number of ecological models for the North Sea around. Skogen and Moll (2000) [Skogen, M.D., Moll, A. 2000. Interannual variability of the North Sea primary production: comparison from two model studies. Continental Shelf Research 20 (2), 129–151] compared the interannual variability of the North Sea primary production using two state-of-the-art ecological models, NORWECOM and ECOHAM1. Their conclusion was that the two models agreed on an annual mean primary production, its variability and the timing and size of the peak production. On the other hand, there was a low (even negative dependent of area) correlation in the production in different years between the two models.In the present work, these conclusions are brought further. To try to better understand the observed differences between the two models, the two ecological models are run in an identical physical setting. With such a set-up also the interannual variability between the two models is in agreement, and it is concluded that the single most important factor for a reliable modeling of phytoplankton and nutrient distributions and transports within the North Sea is a proper physical model. 相似文献
8.
A Mean Dynamic Topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model 总被引:2,自引:0,他引:2
M.-H. Rio P.-M. Poulain A. Pascual E. Mauri G. Larnicol R. Santoleri 《Journal of Marine Systems》2007,65(1-4):484
In the Mediterranean Sea, where the mean circulation is largely unknown and characterized by smaller scales and less intensity than in the open ocean, the interpretation of altimetric Sea Level Anomalies (SLA) is rather difficult. In the context of operational systems such as MFS (Mediterranean Forecasting System) or MERCATOR, that assimilate the altimetric information, the estimation of a realistic Mean Dynamic Topography (MDT) consistent with altimetric SLA to be used to reconstruct absolute sea level is a crucial issue. A method is developed here to estimate the required MDT combining oceanic observations as altimetric and in-situ measurements and outputs from an ocean general circulation model (OGCM).In a first step, the average over the 1993–1999 period of dynamic topography outputs from MFS OGCM provides a first guess for the computation of the MDT. Then, in a second step, drifting buoy velocities and altimetric data are combined using a synthetic method to obtain local estimates of the mean geostrophic circulation which are then used to improve the first guess through an inverse technique and map the MDT field (hereafter the Synthetic Mean Dynamic Topography or SMDT) on a 1/8° resolution grid.Many interesting current patterns and cyclonic/anticyclonic structures are visible on the SMDT obtained. The main Mediterranean coastal currents are well marked (as the Algerian Current or the Liguro–Provenço–Catalan Current). East of the Sicily channel, the Atlantic Ionian Stream divides into several main branches crossing the Ionian Sea at various latitudes before joining at 19°E into a unique Mid-Mediterranean Jet. Also, strong signatures of the main Mediterranean eddies are obtained (as for instance the Alboran gyre, the Pelops, Ierapetra, Mersa-Matruh or Shikmona anticyclones and the Cretan, Rhodes or West Cyprius cyclones). Independent in-situ measurements from Sea Campaigns NORBAL in the North Balearic Sea and the North Tyrrhenian Sea and SYMPLEX in the Sicily channel are used to validate locally the SMDT: deduced absolute altimetric dynamic topography compares well with in-situ observations. Finally, the SMDT is used to compute absolute altimetric maps in the Alboran Sea and the Algerian Current. The use of absolute altimetric signal allows to accurately follow the formation and propagation of cyclonic and anticyclonic eddies in both areas. 相似文献
9.
Biogenic silica cycle in surface sediments of the Greenland Sea 总被引:2,自引:0,他引:2
In contrast to several investigations of biogenic silica (BSi) content and recycling in surface sediments of the Southern Ocean, little is known about the benthic cycle of BSi in high northern latitudes. Therefore, we investigated the silicic acid concentration of pore water and BSi content of surface sediments from the Greenland Sea. Low BSi contents of less than 2% were observed. High-resolution (2–5 mm) BSi profiles and comparisons to trap studies suggest that only relatively dissolution-resistant siliceous components reach the seafloor. Pore water investigations reveal BSi fluxes of more than 300 mmol m−2 a−1 only for a few sites on the shelf. A statistically significant relationship between water depth and BSi rain rate reaching the seafloor was not observed. Sampling along a transect perpendicular to the marginal ice zone (MIZ) revealed no enhanced rain rate of BSi reaching the seafloor in the vicinity of the ice edge. Although the MIZ of the Greenland Sea is characterized by the enhanced export of biogenic particles from surface waters, this feature is not reflected in the benthic cycle of biogenic silica. The lack of such a relationship, which is in contrast to observations of shelf and continental margin sediments in the southern South Atlantic, is probably caused by the enhanced dissolution of BSi in the water column and highly dynamic ice conditions in the Greenland Sea. 相似文献
10.
A new method to calculate the anthropogenic CO2 (ΔDICant) within the water column of the North Atlantic Ocean is presented. The method exploits the equilibrium chemistry of the carbonate system with reference to temperature, salinity and the partial pressure of atmospheric CO2 (pCO2,atm). ΔDICant is calculated with reference to the ventilation ages of water masses derived from tracer data and to the time history of pCO2,atm. The method is applied to data recorded during the WOCE program on the WHP A1/E transect in the North Atlantic Ocean, where we characterise six key water masses by their relationships of dissolved inorganic carbon (DIC) and apparent oxygen utilisation (AOU). The error in determining ΔDICant is reduced significantly by minimising the number of values referred to, especially by avoiding any use of remineralisation ratios of particulate organic matter. The distribution of ΔDICant shows highest values of up to 45 μmol kg−1 in the surface waters falling to 28–33 μmol kg−1 in the Irminger Sea west of the Mid-Atlantic Ridge. The eastern basin is imprinted by older water masses revealing decreasing values down to 10 μmol kg−1 ΔDICant in the Antarctic Bottom Water. These findings indicate the penetration of the whole water column of the North Atlantic Ocean by anthropogenic CO2. 相似文献
11.
Lo Berline Jean-Michel Brankart Pierre Brasseur Yann Ourmires Jacques Verron 《Journal of Marine Systems》2007,64(1-4):153
Several studies on coupled physical–biogeochemical models have shown that major deficiencies in the biogeochemical fields arise from the deficiencies in the physical flow fields. This paper examines the improvement of the physics through data assimilation, and the subsequent impact on the ecosystem response in a coupled model of the North Atlantic. Sea surface temperature and sea surface height data are assimilated with a sequential method based on the SEEK filter adapted to the coupling needs. The model domain covers the Atlantic from 20°S to 70°N at eddy-permitting resolution. The biogeochemical model is a NPZD-DOM model based on the P3ZD formulation. The results of an annual assimilated simulation are compared with an annual free simulation.With assimilation, the representation of the mixed layer depth is significantly improved in mid latitudes, even though the mixed layer depth is generally overestimated compared to the observations. The representation of the mean and variance of the currents is also significantly improved.The nutrient input in the euphotic zone is used to assess the data assimilation impact on the ecosystem. Data assimilation results in a 50% reduction of the input due to vertical mixing in mid-latitudes, and in a four- to six-fold increase of the advective fluxes in mid-latitudes and subtropics. Averaged zonally, the net impact is a threefold increase for the subtropical gyre, and a moderate (20–30%) decrease at mid and high latitudes.Surface chlorophyll concentration increases along the subtropical gyre borders, but little changes are detected at mid and high latitudes. An increase of the primary production appears along the Gulf Stream path, but it represents only 12% on average for mid and high latitudes. In the subtropical gyre centre, primary production is augmented but stays underestimated (20% of observations). These experiments show the benefits of physical data assimilation in coupled physical–biogeochemical applications. 相似文献
12.
Argo is an international project that is deploying an array of temperature and salinity profiling floats over the global ocean. Here we use the error formulation derived from Optimal Statistical Interpolation to estimate statistical errors associated with the recovery of the temperature field in the North-East Atlantic ocean. Results indicate that with the present distribution of floats (119 in the considered domain), scales of wavelength larger than 500 km can be recovered with a relative uncertainty (rms error relative to the standard deviation of the field) of about 7% at 50 m, 8% at 200 m and 10% at 1000 m. This corresponds to mean absolute errors of 0.111 °C at 50 m, 0.104 °C at 200 m and 0.073 °C at 1000 m.The splitting of total errors into instrumental and sampling contributions reveals that, in the present scenario, errors are more due to the small number of floats than to instrumental errors, especially at upper levels. For scales larger than 500 km this will hold true until 200–250 floats are deployed (less than 200 for deep levels). In such a simulated scenario, the number of observations and the technology become approximately equally limiting factors for the accuracy of the temperature field mapping, with total relative errors of less than 2% at upper levels and about 3% at 1000 m. 相似文献
13.
A. Alvera-Azcrate A. Barth Z. Ben Bouallgue M. Rixen J.M. Beckers 《Journal of Marine Systems》2007,65(1-4):460
The quality assessment of a nested model system of the Mediterranean Sea is realised. The model has two zooms in the Provençal Basin and in the Ligurian Sea, realised with a two-way nesting approach. The experiment lasts for nine weeks, and at each week sea surface temperature (SST) and sea level anomaly are assimilated. The quality assessment of the surface temperature is done in a spatio-temporal approach, to take into account the high complexity of the SST distribution. We focus on the multi-scale nature of oceanic processes using two powerful tools for spatio-temporal analysis, wavelets and Empirical Orthogonal Functions (EOFs). We apply two-dimensional wavelets to decompose the high-resolution model and observed SST into different spatial scales. The Ligurian Sea model results are compared to observations at each of those spatial scales, with special attention on how the assimilation affects the model behaviour. We also use EOFs to assess the similarities between the Mediterranean Sea model and the observed SST. The results show that the assimilation mainly affects the model large-scale features, whereas the small scales show little or no improvement and sometimes, even a decrease in their skill. The multiresolution analysis reveals the connection between large- and small-scale errors, and how the choice of the maximum correlation length of the assimilation scheme affects the distribution of the model error among the different spatial scales. 相似文献
14.
Hydrological changes in the Mediterranean Sea in relation to changes in the freshwater budget: A numerical modelling study 总被引:2,自引:0,他引:2
The response of the Mediterranean Sea and the various sub-basins to changes in the freshwater budget are investigated in a process-oriented study, using the POM model. The model is first integrated using values of the Nile and Ebro rivers runoff, as well as of the Dardanelles freshwater input, typical of the fifties. The model reaches a steady state representative of that existing in the Mediterranean prior to the major damming period after 90 years of integration. Then the model is integrated using the reduced river runoff values typical of the after-damming period. The additional impact of decadal scale trends in the precipitation rate as well as of intense surface cooling periods/events on the thermohaline circulation during the last 40 years were also examined. The model results show that the dramatic reduction of the Nile freshwater input and to a lesser extent the reduction of the freshwater input from the Dardanelles Straits induced a large increase in the sea surface salinity in the Aegean and Levantine basins in the late sixties/early seventies, in agreement with observations. Furthermore, the Ebro runoff reduction during the same period further enhanced the salinity increase in the Levantine basin as higher salinity surface waters of the western basin reached the eastern basin via the Atlantic Water circulation. This saltier surface layer in the vicinity of the Rhodes Gyre favoured the preconditioning for the formation of the Levantine Intermediate Water, resulting in about 40% increase of its formation rate. This in turn resulted in the production of saltier and larger amounts of deep waters in the various deep-water formation sites. According to the model, the river damming and decreased precipitation since the eighties explain about 95% of the observed salinity increase in the Western Mediterranean Deep Water over the last 40 years. The major contributor to this increase was proved to be the Nile damming. The salt increase in the surface layer is proved to be insufficient to produce alone the two climatic transient events in the deep waters of the Eastern Mediterranean in the late sixties and early nineties, respectively. Surface cooling was found to be important, resulting in large deep water formation and thus allowing the propagation of the increased surface salinity signal to the deep layers. However, model results demonstrate that the river damming played an important role in the long-term salt preconditioning of the surface/intermediate layers, thus contributing in triggering the two events. 相似文献
15.
Seasonal and inter-annual variations in surface freshwater fluxes in the Mediterranean Sea are examined. Evaporation and precipitation rates are estimated from ERA15, the re-analysis project carried out at the European Center for Medium-Range Weather Forecasts (ECMWF) for the period 1979–1993. A seasonal cycle of river runoff is computed from a recent historical data set. The climatological mean for precipitation (326 mm/yr) is comparable to previous estimates, whereas that for evaporation (920 mm/yr) is low compared to other independent estimates, but regions of high and low evaporation rates are correctly located. The budget reveals an annual mean freshwater deficit in the Mediterranean of 480 mm/yr, lower than previous estimates because of the lower evaporation rate estimated by ECMWF. Consequently, the flows through the straits of Gibraltar and Sicily, deduced from the freshwater budget, are found to be slightly low.Seasonal and inter-annual variabilities of ERA15 precipitation are consistent with those deduced from independent precipitation estimates obtained with SSM/I observations for the 1988–1993 period. ECMWF and satellite estimates both agree on the amplitude of the seasonal cycle. The seasonal cycle of the river runoff has a globally small contribution to the freshwater budget, but is significant in summer when the precipitation is nearly null. The variability of the freshwater flux for the Mediterranean as a whole shows a strong seasonal cycle (amplitude of 50 mm/month), which seems to be mainly controlled by evaporation. The inter-annual variability of the freshwater flux, however, appears to be governed mainly by precipitation. Its amplitude, which is of the order of 50 mm/yr on average but may reach nearly 150 mm/yr for a particular year, is considered to be large but nevertheless not sufficient to explain differences observed in the estimates of the climatological mean freshwater flux proposed by various authors. The freshwater deficit in the Mediterranean Sea has globally increased by nearly 50 mm, mainly because of a decrease in precipitation over this 15-yr period. 相似文献
16.
Within the framework of several local and international programs, a quasi-operational ocean-forecasting system for the Southeastern Mediterranean Sea has been established and evaluated through a series of preoperational tests. The Princeton Ocean Model (POM) is used for simulating and predicting the hydrodynamics while the Wave Model (WAM) is used for predicting surface waves. Both models were set up to allow varying resolution and multiple nesting. In addition, POM was set up to be easily relocatable to allow rapid deployment of the model for any region of interest within the Mediterranean Sea. A common requirement for both models is the need for atmospheric forcing. Both models require time varying wind or wind stress. In addition, the hydrodynamic model requires initial conditions as well as time dependent surface heat fluxes, fresh water flux, and lateral boundary conditions at the open boundaries. Several sources of atmospheric forcing have been assessed based on their availability and their impact on the quality of the ocean models' forecasts. The various sources include operational forecast centers, other research centers, as well as running an in-house regional atmospheric model. For surface waves, higher spatial and temporal resolution of the winds plays a central role in improving the forecasts in terms of significant wave height and the timing of various high wave events. For the hydrodynamics, using the predicted wind stress and heat fluxes directly from an atmospheric model can potentially produce short range ocean forecasts that are nearly as good as hindcasts forced with gridded atmospheric analyses. Finally, a high-resolution, nested version of the model has shown to be stable under a variety of forcing conditions and time scales, thus indicating the robustness of the selected nesting strategy. For the southeastern corner of the Mediterranean, at forecast lead times of up to 4 days the high-resolution model shows improved skill over the coarser resolution driving model when compared to satellite derived sea surface temperatures. Most of the error appears to be due to the analysis error inherent in the initial conditions. 相似文献
17.
18.
The fluctuations of catches of the deep-sea shrimp Aristeus antennatus (Risso, 1816) were analysed in the 6 ports of Catalonia where production is concentrated, based on monthly landings from 1988 to 2004. The 6 selected ports produced 300 t of red shrimp in 2004, or 80% of the total production in Catalonia. The series for each port showed clear interannual variability, with peaks of production in the early 1990s and more recently from 2001 to 2003. The time periods of the monthly data series, estimated by frequency analysis based on Fourier transform, varied around 7–8 years in the four central ports and 12–13 years in the two northern ports. Additionally, the different curves were not in phase: even in nearby ports, the maximum production is observed in different years. Since the North Atlantic Oscillation (NAO) index is an excellent proxy for long-term series of environmental variables, we aimed to explore relationships between the fluctuation of the NAO index and A. antennatus landings in the Catalan Sea. The correlation between the mean annual NAO index and the annual catches in each port was positive and significant with some time lags (from 1 to 3 years). The existence of clear patterns linking the NAO with marine ecological processes has been demonstrated in many studies, but the underlying ecological mechanisms are far from being well understood. The variations in environmental parameters linked to the NAO may act on biological organisms at different levels (individual, population) through physiology (metabolic and reproductive processes) or through trophic relationships, including ecological cascade effects. We propose that NAO-induced environmental variability may enhance food supply to A. antennatus and hence strengthen the reproductive potential of particular year classes, which result in increased catches 1 to 3 years later, although other possible effects of environmental variability on the population dynamics of this species are worth investigating. 相似文献
19.
Seasonal SeaWiFS chlorophyll a concentrations cycles and annual changes of altimeter Sea Level Anomaly are derived for the subtropical North Atlantic near 35°N and along a Gulf Stream axis. Spatial structure of SeaWiFS, is defined in terms of deviations from a local seasonal cycle and examined in relation to altimeter eddy structure. In the subtropical region near 35°N, SeaWiFS structure is evident during the spring bloom period with a scale of 430 km, or about twice the eddy scale. A Gulf Stream axis has been selected as a region where the Sea Level Anomaly variance is a maximum. Eddy propagation speeds and scales are examined. Cold-core (cyclonic) rings correspond to areas of high SeaWiFS chlorophyll a. Warm-core (anticyclonic) rings relate to areas of low chlorophyll concentration. Both SeaWiFS structure and eddy structure have a spatial scale of 450 km or twice the ring scale along the Gulf Stream axis. SeaWiFS chlorophyll anomalies and Altimeter Sea Level Anomaly structure have an overall negative correlation coefficient of r = − 0.34. Swirl currents between eddies redistribute surface chlorophyll concentrations and can spatially bias maximum and minimum concentration levels off eddy centre. 相似文献
20.
The NW Mediterranean experiences, as illustrated by the last decade, strong and rapidly varying storms with severe waves and winds. This has motivated a continuous validation of models and the efforts to improve wave and wind predictions. In this paper we use two atmospherics models, MASS (from SMC-Meteorological Office of Catalunya) and ARPEGE (from Météo-France), to force two third generation wave models: WAM and SWAN. The evaluation and comparison has been carried out for two severe storms registered in November 2001 and March–April 2002.The ARPEGE and MASS models predicted higher 10 m wind speeds than coastal meteorological stations, a fact attributed to local land influences. Regarding the 10 m wind direction, models do not present large differences, although considerable deviations from recorded data were found during some dates. ARPEGE presents less scatter and lower errors than MASS when compared with QuikSCAT data.The 10m wind fields from both atmospheric models were used to force the two selected wave models and analyse the errors and sensitivities when predicting severe wave storms. The wave model simulations show some interesting results; during the storm, the spatial wave pattern using ARPEGE showed a higher maximum, although the values of significant wave height at the buoys were lower than the ones forced by MASS (with both WAM and SWAN). The SWAN simulations show a better agreement in predicting the growing and waning of the storm peaks. The prediction of mean period was improved when using the ARPEGE wind field. However the underestimation by SWAN due to the large energy at high frequencies was evident. Validation of spectral shape predictions showed that it still has considerable error when predicting the full frequency spectra. The storms showed bimodal spectral features which were not always reproduced by wave models and are likely to be responsible for part of the discrepancies. 相似文献