首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, increasing attention has been drawn to the development of various applications of intelligent transportation systems (ITS), which are credited with the amelioration of traffic conditions in urban and regional environments. Advanced traveler information systems (ATIS) constitute an important element of ITS by providing potential travelers with information on the network's current performance both en-route and pre-trip. In order to tackle the complexity of such systems, derived from the difficulty of providing real-time estimations of current as well as forecasts of future traffic conditions, a series of models and algorithms have been initiated. This paper proposes the development of an integrated framework for real-time ATIS and presents its application on a large-scale network, that of Thessaloniki, Greece, concluding with a discussion on development and implementation challenges as well as on the advantages and limitations of such an effort.  相似文献   

2.
In view of the serious traffic congestion during peak hours in most metropolitan areas around the world and recent improvement of information technology, there is a growing aspiration to alleviate road congestion by applications of electronic information and communication technology. Providing drivers with dynamic travel time information such as estimated journey times on major routes should help drivers to select better routes and guide them to utilise existing expressway network. This can be regarded as one possible strategy for effective traffic management. This paper aims to investigate the effects and benefits of providing dynamic travel time information to drivers via variable message signs at the expressway network. In order to assess the effects of the dynamic driver information system with making use of the variable message signs, a time-dependent traffic assignment model is proposed. A numerical example is used to illustrate the effects of the dynamic travel time information via variable message signs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Transport authorities, especially those in developing countries where rising income stimulate increased car ownership rates, are often concerned with maintaining or increasing levels of public transport use. Therefore, the ability to identify clients at risk of abandoning the system can be valuable for remedial measures, allowing for more focused quality improvements. We present and apply a model that determines the probability of migrating from public to private transport at both aggregated and disaggregated levels. In application, the model predicted migration with 60% accuracy in the first preference recovery measure. The proposed model can improve the understanding of the behavior of public transport users, the analysis of demand stability and the factors influencing migration. This, in turn, can help to focus policy and management measures and increase the efficiency of public investment.  相似文献   

4.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times.  相似文献   

5.
As intelligent transportation systems (ITS) approach the realm of widespread deployment, there is an increasing need to robustly capture the variability of link travel time in real-time to generate reliable predictions of real-time traffic conditions. This study proposes an adaptive information fusion model to predict the short-term link travel time distribution by iteratively combining past information on link travel time on the current day with the real-time link travel time information available at discrete time points. The past link travel time information is represented as a discrete distribution. The real-time link travel time is represented as a range, and is characterized using information quality in terms of information accuracy and time delay. A nonlinear programming formulation is used to specify the adaptive information fusion model to update the short-term link travel time distribution by focusing on information quality. The model adapts good information by weighing it higher while shielding the effects of bad information by reducing its weight. Numerical experiments suggest that the proposed model adequately represents the short-term link travel time distribution in terms of accuracy and robustness, while ensuring consistency with ambient traffic flow conditions. Further, they illustrate that the mean of a representative short-term travel time distribution is not necessarily a good tracking indicator of the actual (ground truth) time-dependent travel time on that link. Parametric sensitivity analysis illustrates that information accuracy significantly influences the model, and dominates the effects of time delay and the consistency constraint parameter. The proposed information fusion model bridges key methodological gaps in the ITS deployment context related to information fusion and the need for short-term travel time distributions.  相似文献   

6.
An essential element of demand modeling in the airline industry is the representation of time of day demand—the demand for a given itinerary as a function of its departure or arrival times. It is an important datum that drives successful scheduling and fleet decisions. There are two key components to this problem: the distribution of the time of day demand and how preferred travel time influences itinerary choice. This paper focuses on estimating the time of day distribution. Our objective is to estimate it in a manner that is not confounded with air travel supply; is a function of the characteristics of the traveler, the trip, and the market; and accounts for potential measurement errors in self-reported travel time preferences. We employ a stated preference dataset collected by intercepting people who were booking continental US trips via an internet booking service. Respondents reported preferred travel times as well as choices from a hypothetical set of itineraries. We parameterize the time of day distribution as a mixture of normal distributions (due to the strong peaking nature of travel time preferences) and allow the mixing function to vary by individual characteristics and trip attributes. We estimate the time of day distribution and the itinerary choice model jointly in a manner that accounts for measurement error in the self-reported travel time preferences. We find that the mixture of normal distributions fits the time of day distribution well and is behaviorally intuitive. The strongest covariates of travel time preferences are party size and time zone change. The methodology employed to treat self-reported travel time preferences as potentially having error contributes to the broader transportation time of day demand literature, which either assumes that the desired travel times are known with certainty or that they are unknown. We find that the error in self-reported travel time preferences is statistically significant and impacts the inferred time of day demand distribution.  相似文献   

7.
Limited pedestrian behavior models shed light on the case at signalized crosswalk, where pedestrian behavior is characterized by group or individual evasion with surrounding pedestrians, collision avoidance with conflicting vehicles, and response to signal control and crosswalk boundary. This study fills this gap by developing a microscopic simulation model for pedestrian behavior analysis at signalized intersection. The social force theory has been employed and adjusted for this purpose. The parameters, including measurable and non-measurable ones, are either directly estimated based on observed dataset or indirectly derived by maximum likelihood estimation. Last, the model performance was confirmed in light of individual trajectory comparison between estimation and observation, passing position distribution at several cross-sections, collision avoidance behavior with conflicting vehicles, and lane-formation phenomenon. The simulation results also concluded that the model enables to visually represent pedestrian crossing behavior as in the real world.  相似文献   

8.
    
Abstract

This paper reviews the main modules of an integrated system for incident management in real-time, -sim. A core to such a system is a microscopic simulator with extended abilities to model the temporal and spatial evolution of specified non-recurrent traffic conditions. The paper reviews the mathematical formulation of the car-following and lane-changing modules. The model is validated using a simulation-based approach. Concluding comments on the general validation process of the model are provided. The paper finally presents a sample of the accident patterns replicated by the model together with their implications for real world validation.  相似文献   

9.
    
‘Vehicle miles traveled’ (VMT) is an important performance measure for highway systems. Currently, VMT [or ‘annual average daily traffic’ (AADT)] is estimated from a combination of permanent counting stations and short-term counts done at specified locations as part of the Highway Performance Monitoring System (HPMS) mandated by the US Federal Highway Administration. However, on some roadway sections, Intelligent Transportation Systems (ITS) such as detectors and cameras also produce traffic data. The question addressed in this paper is whether and under what conditions ITS systems data could be used instead of HPMS short-term counts (called ‘coverage counts’)? This paper develops a methodology for determining a threshold number of missing daily traffic counts, or alternatively, the number of valid ITS data observations needed, in order to confidently replace the HPMS coverage counts with ITS data.

Because ITS counts, coverage counts, and actual ground counts (e.g. continuous counts) cannot be found coexisting on a roadway section, it is hard to compare them directly. In this paper, the Monte Carlo simulation method is employed to generate synthetic ITS counts and coverage counts from a set of relatively complete traffic counts collected at a continuous count station. Comparisons are made between simulated ITS counts, coverage counts, and actual ground counts. The simulation results indicate that when there are<330 daily traffic counts missing in a set of ITS counts in a year, that is, when there are at least 35 days of valid data, ITS counts can be used to derive a better AADT than using coverage counts. This result is applied to calculate the VMT for the Hampton Roads region in Virginia. The comparison between the VMTs derived with using and not using the threshold number indicates that these two VMTs are significantly different.  相似文献   

10.
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters’ responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers’ behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief–desire–intention agent architecture.  相似文献   

11.
We present a dynamic network loading model that yields queue length distributions, accounts for spillbacks, and maintains a differentiable mapping from the dynamic demand on the dynamic queue lengths. The model also captures the spatial correlation of all queues adjacent to a node, and derives their joint distribution. The approach builds upon an existing stationary queueing network model that is based on finite capacity queueing theory. The original model is specified in terms of a set of differentiable equations, which in the new model are carried over to a set of equally smooth difference equations. The physical correctness of the new model is experimentally confirmed in several congestion regimes. A comparison with results predicted by the kinematic wave model (KWM) shows that the new model correctly represents the dynamic build-up, spillback and dissipation of queues. It goes beyond the KWM in that it captures queue lengths and spillbacks probabilistically, which allows for a richer analysis than the deterministic predictions of the KWM. The new model also generates a plausible fundamental diagram, which demonstrates that it captures well the stationary flow/density relationships in both congested and uncongested conditions.  相似文献   

12.
People are liable to exaggerate their future use of new transport facilities when they are interviewed about it before it is in operation. This is often due to the fact that they have no real frame of reference for the study. In order to overcome this, we have tried to perfect an original behaviour-change simulation method (Section 1). It has been tested on a town on the outskirts of Lyons (France) and has provided interesting results. However, to use it as a forecasting tool, we have to make sure that the assertions by potential users when interviewed are consistent with actual behaviour when the new facilities become available (Section 2). This test was carried out when a new light rail line was introduced in Grenoble (France). A first survey was undertaken before the opening of the new line, and people's actual (new) behaviour was surveyed after the new line opened. It is therefore possible to analyse the validity of the simulation (Section 3).  相似文献   

13.
This research study was designed to assess by simulation the efficacy of incident detection by cellular phone call-in programs. The assessment was conducted by varying the proportion of drivers with cellular phones on the highway so as to mirror the cellular industry statistics that show a continued growth of ownership of cellular phones in the United States. An analytical model, which combined simulation and the limited field data available in the literature, was used to determine measures of effectiveness of the cellular phone-based detection system. The results showed that a cellular phone detection system offers fast incident detection times and higher detection rates for both shoulder and lane blocking incidents. For example, in moderate traffic flow (i.e. 1,550 vehicles per hour per lane), 90 percent of incidents blocking two lanes were detected in 1.5 minutes when the proportion of drivers with cellular phones was one out of 10 drivers, even with only 20 percent of them willing to report incidents. When the current proportion of cellular ownership, i.e. 1 out of 3, was used in the simulation, the detection time improved to 0.8 minutes. The simulation analysis of incident detection by cellular phones also showed that there is a direct relationship between the probability of detection and the detection time; that is, the specification of a higher detection rate resulted in slower detection times. This is in sharp contrast with the results of field study of automatic incident detection (AID) systems which demonstrated an inverse relationship between probability of detection and detection time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
This paper presents results from a research case study that examined the distribution of travel time of origin–destination (OD) pairs on a transportation network under incident conditions. Using a transportation simulation dynamic traffic assignment (DTA) model, incident on a transportation network is executed under normal conditions, incident conditions without traveler information availability, and incident conditions assuming that users had perfect knowledge of the incident conditions and could select paths to avoid the incident location. The results suggest that incidents have a different impact on different OD pairs. The results confirm that an effective traveler information system has the potential to ease the impacts of incident conditions network wide. Yet it is also important to note that the use of information may detriment some OD pairs while benefiting other OD pairs. The methodology demonstrated in this paper provides insights into the usefulness of embedding a fully calibrated DTA model into the analysis tools of a traffic management and information center.  相似文献   

15.
    
This paper quantifies the system-wide impacts of implementing a dynamic eco-routing system, considering various levels of market penetration and levels of congestion in downtown Cleveland and Columbus, Ohio, USA. The study concludes that eco-routing systems can reduce network-wide fuel consumption and emission levels in most cases; the fuel savings over the networks range between 3.3% and 9.3% when compared to typical travel time minimization routing strategies. We demonstrate that the fuel savings achieved through eco-routing systems are sensitive to the network configuration and level of market penetration of the eco-routing system. The results also demonstrate that an eco-routing system typically reduces vehicle travel distance but not necessarily travel time. We also demonstrate that the configuration of the transportation network is a significant factor in defining the benefits of eco-routing systems. Specifically, eco-routing systems appear to produce larger fuel savings on grid networks compared to freeway corridor networks. The study also demonstrates that different vehicle types produce similar trends with regard to eco-routing strategies. Finally, the system-wide benefits of eco-routing generally increase with an increase in the level of the market penetration of the system.  相似文献   

16.
This paper develops an integrated model for reliable estimation of daily vehicle fuel savings and emissions using an integrated traffic emission modeling approach created by incorporating the US Environmental Protection Agency’s vehicle emission model, MOVES, and the PARAMICS microscopic traffic simulation package. A case study is conducted to validate the model using a well-calibrated road network in Greenville, South Carolina. For each transportation fuel considered, both emission and fuel consumption impacts are evaluated based on market shares.  相似文献   

17.
    
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

18.
Airport choice is an important air travel-related decision in multiple airport regions. This paper proposes the use of a probabilistic choice set multinomial logit (PCMNL) model for airport choice that generalizes the multinomial logit model used in all earlier airport choice studies. The paper discusses the properties of the PCMNL model, and applies it to examine airport choice of business travelers residing in the San Francisco Bay Area. Substantive policy implications of the results are discussed. Overall, the results indicate that it is important to analyze the choice (consideration) set formation of travelers. Failure to recognize consideration effects of air travelers can lead to biased model parameters, misleading evaluation of the effects of policy action, and a diminished data fit.  相似文献   

19.
In an Intelligent Transport System (ITS) environment, the communication component is of great importance to support interactions between vehicles and roadside infrastructure. Previous studies have focused on the physical capability and capacity of the communication technologies, but the equally important development of suitable and efficient semantic content for transmission received notably less attention. Ontology is one promising approach for context modelling in ubiquitous computing environments, and in the transport domain it can be used both for context modelling and semantic contents for vehicular communications. This paper explores the development of an ontological model implementing relative geo-semantic information messages to support vehicle-to-vehicle communications. The proposed ontology model contains classes, objects, their properties/relations as well as some functions and query templates to represent and update the information of dynamic vehicles, inter-vehicle interactions and behaviour. This model was developed through a scenario enabling the evaluation of traffic conflict resolution approaches, by implementing a set of decision-making processes for intelligent vehicles. Given the scope of the proposed ontology modelling, it shows how vehicular communications can be used to update each vehicle’s context model. This work can be easily extended for more complex interactions among vehicles and the infrastructure.  相似文献   

20.
This paper proposes to optimally configure plug-in electric vehicle (PEV) charging infrastructure for supporting long-distance intercity travel using a general corridor model that aims to minimize a total system cost inclusive of infrastructure investment, battery cost and user cost. Compared to the previous work, the proposed model not only allows realistic patterns of origin–destination demands, but also considers flow-dependent charging delay induced by congestion at charging stations. With these extensions, the model is better suited to performing a sketchy design of charging infrastructure along highway corridors. The proposed model is formulated as a mixed integer program with nonlinear constraints and solved by a specialized metaheuristic algorithm based on Simulated Annealing. Our numerical experiments show that the metaheuristic produces satisfactory solutions in comparison with benchmark solutions obtained by a mainstream commercial solver, but is more computationally tractable for larger problems. Noteworthy findings from numerical results are: (1) ignoring queuing delay inducted by charging congestion could lead to suboptimal configuration of charging infrastructure, and its effect is expected to be more significant when the market share of PEVs rises; (2) in the absence of the battery cost, it is important to consider the trade-off between the costs of charging delay and the infrastructure; and (3) building long-range PEVs with the current generation of battery technology may not be cost effective from the societal point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号