共查询到19条相似文献,搜索用时 49 毫秒
1.
《铁道标准设计通讯》2017,(1):133-138
针对列车车轮故障诊断,研究基于经验模态分解(EMD)广义能量法诊断技术。首先对钢轨振动信号进行经验模态分解,选取出有效本征模函数分量并赋予权重系数,然后求出各分量的能量加权和作为该信号的EMD广义能量值,最后确定出正常车轮的EMD广义能量安全域阈值,判断车轮的故障状态。采用仿真的正常及故障车轮的钢轨振动信号进行实验,验证提出的方法对正常和故障车轮的识别准确率达到90%以上。 相似文献
2.
3.
针对高速列车齿轮箱滚动轴承早期故障特征提取困难的情况,提出了基于经验小波变换(Empirical WaveletTransform,EWT)和奇异值分解(Singularvaluedecomposition,SVD)的轴承故障诊断方法。首先对信号进行EWT变换得到各阶固有模态分量,然后计算各阶固有模态分量的峭度值并选取较大峭度值对应的分量。将选取的分量构造矩阵进行正交化奇异值分解,选择合适的阶数重构信号,最后对重构信号进行Hilbert包络解调分析。分别对仿真信号和滚动轴承发生外环故障进行分析,可以较为清晰地看到滚动轴承故障特征。研究结果表明,结合EWT、峭度系数和SVD的诊断方法可以准确、快速地提取轴承故障信息,从而可以对滚动轴承进行有效诊断。 相似文献
4.
5.
《铁道机车车辆工人》2016,(4)
利用振动信号分析中的包络分析方法对某机组齿轮箱的异常响声进行诊断,通过振动分析发现该齿轮箱第3级大、小齿轮某固定位置均存在不良状况,啮合时故障点相互追逐导致了异常响声。针对故障原因进行探讨,并提出了可行的措施。 相似文献
6.
货车滚动轴承故障诊断装置是车辆段和车轮厂轮对检修生产线上的关键设备之一。本文介绍了该装置的基本结构、诊断原理、专家系统和应用试验结果。 相似文献
7.
基于自适应STFT的货车滚动轴承故障诊断 总被引:2,自引:0,他引:2
带故障的铁路货车滚动轴承振动信号表现为低频平稳信号与高频的周期性冲击信号的叠加。采用以三阶B样条函数作为窗函数的自适应短时傅立叶变换(STFT)对货车滚动轴承振动信号进行时频分析和故障信息提取。与传统的固定带宽的STFT相比,自适应STFT在不同频段自适应选取窗长,大大提高了振动信号的时频分辨率。应用该方法对197726型货车滚动轴承在内圈剥离、外圈剥离两种故障状态下的振动信号做了分析,求得故障频率分别为61.32 Hz和46.36 Hz,与内外圈的理论故障频率相符,可以有效地诊断出铁路货车滚动轴承内外圈故障。 相似文献
8.
9.
基于小波包分析的货车滚动轴承故障诊断 总被引:10,自引:1,他引:10
铁路车辆滚动轴承故障的不解体诊断,对于提高轴承诊断效率,减轻操作人员的劳动强度和保证铁路运输的安全是至关重要。结合小波包分解和加权K近邻法提出了一种新的货车滚动轴承不解体故障诊断方法。首先利用小波包对滚动轴承的振动加速度信号进行分解,得到滚动轴承动态信号在不同频带的能量,并以此作为滚动轴承的特征向量;然后采用加权K近邻法对滚动轴承进行故障诊断。对197726型货车滚动轴承在轮对不解体条件下进行了诊断实验,结果表明该方法能准确地检测出滚动轴承外圈、内圈及滚子的局部缺陷,并且诊断速度快,完全满足实时诊断要求。 相似文献
10.
针对滚动轴承故障诊断问题,提出一种融合一维卷积神经网络(1D CNN)和麻雀算法优化支持向量机(SSA-SVM)的网络结构。该网络结构通过卷积运算对原始时域振动信号直接进行特征提取,将提取到的特征输入到麻雀算法优化的支持向量机中,使用支持向量机代替Softmax进行分类。利用滚动轴承故障数据进行验证,此方法故障诊断精度高达0.983,高于其他网络结构,且整体网络结构简单,有一定实际应用价值。 相似文献
11.
针对轨边声学轴承信号有用特征微弱、易被强噪声掩盖的问题,设计实现了一种将最小熵解卷积与改进局域均值分解相结合的方法,达到信号降噪与故障诊断目的。利用三次Hermite插值改善LMD并提高LMD分解精度。将采集到的强噪信号进行MED降噪,再利用改进LMD算法进行分解,使多分量信号分解成单分量信号,并计算各分量的峭度值,挑选出峭度值最大的分量,最后利用包络谱分析,提取滚动轴承的故障特征。计算信号的峰值信噪比(PSNR,Peak Signal to Noise Ratio),将其作为降噪指标,体现方法的降噪性能。实验结果表明,设计的方法应用于轴承故障诊断,能将信号信噪比提高5.13 dB,能精准定位并提取轴承缺陷位置和信号特征,具有较好降噪和信息分辨能力。 相似文献
12.
13.
14.
机车走行部滚动轴承的状况直接关系到机车的性能和列车的运行安全。针对目前机车走行部滚动轴承故障诊断准确率不高、模型构建时间较长的问题,提出一种基于小波包和贝叶斯分类的故障诊断方法。通过小波包变换构造故障特征集,利用粗糙集和主成分分析进行降维,将未降维和降维之后的故障特征集输入到贝叶斯分类模型中实现故障诊断,最后将贝叶斯分类方法和神经网络及最小二乘支持向量机方法进行比较。仿真结果表明,朴素贝叶斯分类方法构建模型的时间更短,分类准确率更高。 相似文献
15.
针对机车轮对轴承在实际运行过程中故障特征难以提取的问题,提出经验小波变换(Empirical Wavelet Transform,EWT)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的滚动轴承故障特征提取方法.对原始信号进行傅里叶变换得到Fourier频谱图,根据频谱中的极大值将Fourier频谱图进行分段得到若干模态分量,以无量纲的裕度指标作为评价指标,再采用最大相关峭度解卷积对裕度因子最大的模态分量进行降噪处理.通过分析其包络谱中的频率成分来实现故障诊断.研究结果表明:所提方法对不同故障类型的轮对轴承进行诊断,可以准确有效的识别轮对轴承故障类型,具有一定的工程实用价值. 相似文献
16.
通过对机车轴承振动信号的分析处理,提出基于支持向量机(SVM)的故障诊断方法,提取反映轴承运行状态的无量纲系数作为故障的特征向量,并以此作为输入来建立支持向量机分类器,利用SVM网络的智能性来判断机车轴承的工作状态和故障类型.实验结果表明,提出的方法在小样本的情况下仍能准确、有效地对机车轴承的工作状态和故障类型进行分类,实现机车轴承故障的智能诊断. 相似文献
17.
18.
提出基于状态修而研发的机车轴承故障诊断系统。描述系统是通过监测振动和温度信号来对机车走行部轴承进行早期诊断和预警,而且从多个角度同时跟踪几个特征参数,量化轴承故障随时间的发展来预测轴承寿命,引入灰色预测模型故障预报理论。试运行表明:系统先进可靠,能满足机车轴承故障诊断的需求。 相似文献