首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于磁浮列车车辆轨道耦合振动模型,建立了动力学方程,利用编制的仿真程序对车辆轨道的耦合振动进行仿真分析,对于悬挂参数特别是模块侧滚约束参数的影响进行定量研究,确定了悬挂参数的取值范围,并据此对青城山磁浮试验车的悬挂参数设计提出了建议。  相似文献   

2.
磁浮列车与轮轨高速列车对线桥动力作用的比较研究   总被引:5,自引:0,他引:5  
以德国Transrapid高速磁浮列车和日本新干线高速列车为基础,通过建立高速磁浮、轮轨列车与线桥动态相互作用模型,计算了不同行车速度(100~500km/h)和不同桥跨(12~32m)情形下高速列车与桥梁结构的动力响应,并进行了细致的对比分析。结果表明:磁浮列车在高速特别是超高速运行条件下的乘坐舒适性明显优于轮轨高速列车;磁浮与轮轨高速列车作用于轨道的每延米荷载大体相当;高速磁浮列车对小跨度(22m以下)桥梁的动力作用小于轮轨高速列车,而对中等跨度尤其是大跨度桥梁,轮轨高速列车较高速磁浮列车具有明显的优越性。  相似文献   

3.
磁悬浮列车横风稳定性的数值分析   总被引:7,自引:3,他引:7  
利用二维定常不可压缩Navier-Stokes方程、K-E两方程紊流模型,采用有限体积法分析计算了不同车轨结构的磁浮列车横风稳定性,并与轮轨型列车的横风稳定性作了比较。数值分析结果表明,在横向风的作用下,轮轨型列车的横向稳定性优于磁浮列车,而吸力型磁浮列车的横向稳定性又优于U型线路斥力型磁浮列车。  相似文献   

4.
为预测高速磁浮列车引起的地面振动响应及其衰减规律,建立了高速磁浮车桥相互作用模型和磁浮线路桩基基础有限元模型,将磁浮车桥系统动力学仿真获得的车辆动态荷载输入基础有限元模型,计算了高速磁浮车辆引起的地面振动响应.计算结果表明:磁浮车辆引起地面振动响应的衰减规律与轮轨交通车辆的衰减规律基本一致,但在距离线路中心25 m左右没有反弹区;行车速度对磁浮线路地面振动的影响较大,当时速由125 km/h提高到430 km/h时,相同观察点处地面振动级增大约10 dB.  相似文献   

5.
基于柔性轨道研究了随机不平顺下磁浮车辆的动力学特性, 在将轨道受力分解为分段链式结构的基础上, 提出了一种磁浮车辆垂向悬浮稳定性分析方法, 定义了不同悬浮力作用于各自悬浮点时柔性轨道的振动固有频率和模态矩阵; 建立了轨道分段链式结构的离散形式和轨道结构的运动方程, 采用虚拟激励法将轨道不平顺产生的随机激励转化为系统输入激励, 并将轨道随机高低不平顺作为振动激励源进行车轨振动控制; 在不同反馈控制参数下采用电压反馈双环PID控制器数值仿真车辆的悬浮状态, 并分析了轨道随机不平顺激励下反馈控制参数对磁浮系统稳定性的影响。研究结果表明: 当磁浮车辆速度为50~80 km·h-1, 位移反馈参数、速度反馈参数和电流反馈参数分别为140 000、50、500时, 车辆可以从起始间隙16 mm快速定位到平衡位置间隙9 mm, 在2.2 s时即可稳定悬浮, 系统的超调量和稳态误差分别为1.50和0.13 mm, 且系统振动频率趋近于0;当位移反馈参数、速度反馈参数和电流反馈参数分别为15 000、50、400时, 磁浮车辆在轨道随机不平顺作用下的悬浮稳定性变差, 系统在9 s左右逐渐趋于稳定, 但仍旧在平衡位置上下浮动, 且系统振动频率和振动幅值分别为7 Hz和0.5 mm; 当磁浮车辆的速度超出50~80 km·h-1时, 第1组反馈控制参数不再适用, 磁浮系统在1.7 s左右发散, 车辆失稳, 表明在不同车辆速度和反馈控制参数的作用下, 轨道随机不平顺能显著影响磁浮车辆的悬浮稳定性。   相似文献   

6.
为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系...  相似文献   

7.
磁浮列车静悬浮车轨耦合振动对比分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究二系悬挂中置与端置的两种三悬浮架低速磁浮列车的车轨耦合振动特性,依据牛顿第二定律建立了其垂向车轨耦合动力学模型.首先通过动力学方程分别分析了两种磁浮列车车体和悬浮架之间的耦合关系,然后研究了两种磁浮列车悬浮架均存在0.09°的初始角位移时的动力学特性,最后研究了两种磁浮列车中二系悬挂对悬浮架作功的差异.研究结果表明:与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,车体与悬浮架之间的耦合关系更少;当两种磁浮列车悬浮架均存在0.09°的初始角位移时,采用二系悬挂中置的磁浮列车与采用二系悬挂端置的磁浮列车相比,前者具有更小的车体位移、车体垂向振动加速度、轨道梁振动位移和悬浮间隙波动;以上4个参数前者最大值分别为0.005 mm、0.004 m/s2、0.004 mm和0.005 mm;而后者最大值分别为0.023 mm、0.02 m/s2、0.021 mm和0.02 mm;与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,其二系空气弹簧对悬浮架作功更小,仅为前者的50%.  相似文献   

8.
基于SIMPACK的磁悬浮车辆耦合动力学性能仿真模型   总被引:6,自引:2,他引:4  
为了有效评价磁悬浮车辆动力学性能,引入SIMPACK仿真软件,根据磁悬浮车辆多体系统动力学拓扑关系图,建立了磁悬浮车辆-轨道-控制系统的耦合动力学模型,分析了试验结果和仿真结果。在模型中,磁悬浮车辆被视为多刚体,并具有两系悬挂系统,轨道被视为弹性欧拉梁,并考虑了磁悬浮车辆的控制系统性能。数值分析结果表明:梁的最大变形的计算值为1.5mm,试验值为1.6mm,车体的垂向加速度仿真结果与试验结果基本一致,利用仿真模型能较准确地预测耦合系统的动力学性能。  相似文献   

9.
研究了现有文献关于高速列车动力学方面的论述,就高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较展开讨论。得到的主要结论是:地面高速轨道交通应以300km/h左右的轮轨高速铁路为主体;在需要400~600km/h超高速的特定条件下,也可以采用磁浮高速列车,作为一种补充。因此,一方面要积极修建上海浦东机场高速磁浮试验线,一方面要尽早启动京沪轮轨高速铁路的建设。  相似文献   

10.
为了使真空管道高温超导(HTS)侧浮列车获得更高的起动推力和运行加速度,提高列车高速运行时的稳定性,以真空管道HTS侧浮列车驱动系统为研究对象,建立了直线电机2D仿真模型,在此基础上,采用有限元软件仿真和设计实验,对不同次级下的电机起动推力及法向力特性进行了研究.研究结果表明:不同次级材质及厚度对列车运行有着明显影响,当列车以较高同步速度运行时,选择厚度为2 mm左右的工业纯铝作为电机次级,列车能获得较高的起动推力和加速性能,同时铝次级的低密度特性降低列车总重,并在悬挂方向上提供一定的悬浮力,提高了列车运行的稳定性.   相似文献   

11.
高速磁浮悬浮架柔性特征对曲线通过性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究高速磁浮悬浮架小曲线通过动力学性能,考虑高速磁浮悬浮架柔性振动,建立悬浮架有限元模型,并计算其弹性模态,建立高速磁浮整车车辆动力学模型;应用同济大学磁浮试验线线路条件、试验速度曲线及拟合的轨道不平顺,分析了悬浮架柔性振动对悬浮、导向电磁铁间隙、电磁力的影响;同时,建立了刚性悬浮架动力学模型与之对比. 研究结果表明:R400小曲线通过时,电磁铁动力学性能受悬浮架柔性振动的影响较大,两种模型的导向力相差约12.5 kN,悬浮力相差约6.0 kN;通过试验仿真比较,考虑悬浮架柔性的计算结果更接近于实测结果;悬浮架垂向和横向振动的主频分别为10.4 Hz和13.2 Hz,分别与前后悬浮框相对点头、反相摇头模态频率相近;在研究控制参数优化、悬挂参数优化、运行稳定性等高速磁浮关键问题时应考虑悬浮架的柔性振动.   相似文献   

12.
建立了磁浮道岔五跨钢结构连续梁的梁单元和板单元有限元模型,分析了道岔梁的自振特性,计算了磁浮道岔梁的瞬态响应。模态分析表明道岔梁板单元模型的前5阶扭转频率在14.2Hz至16.1Hz之间,与其现场实测值14.9Hz极为接近,道岔梁梁单元模型的扭转频率计算值明显高于实测值,道岔梁板单元模型能更为准确的反映其振动特性。瞬态响应分析表明磁浮车辆通过时道岔梁第三跨跨中挠度最大,车速240km/h时其最大值约为1.29mm。  相似文献   

13.
为研究中低速磁浮道岔主动梁关键参数对车岔耦合振动的影响,进行了各工况下磁浮道岔主动梁的模态测试,并建立了考虑道岔主动梁弹性振动的车岔耦合动力学模型,对悬浮稳定性进行了分析. 通过仿真与试验对比,对道岔主动梁的模态特征进行了修正,并基于修正后的车岔耦合动力学模型,研究了磁浮道岔主动梁不同设计参数对悬浮稳定性的影响规律. 研究结果表明:中间台车采用50 MN/m的弹性约束进行等效,能够达到比较理想的误差要求;二台车支撑方案相比三台车支撑方案,更容易避开磁浮车岔耦合的共振频率;随着主动梁一阶垂向弯曲频率的不断增大,悬浮控制参数的稳定区间越小,当道岔主动梁垂向弯曲频率大于12 Hz时,更容易出现车岔耦合振动现象;随着道岔主动梁刚度的增加,悬浮控制参数的稳定范围越小;增加道岔主动梁结构阻尼比不能解决车岔耦合共振问题,只能降低振动幅值大小;随着道岔主动梁线密度的增大,越不容易出现车岔共振现象,当线密度低于1 500 kg/m时,悬浮稳定区间将急剧下降;中间台车的等效支撑刚度越大,控制参数的稳定区间越小,但影响幅度不大.   相似文献   

14.
采用二维电磁场理论对直线电机气隙磁场的纵向分量和垂向分量进行求解, 得到了电机牵引力和法向力的解析表达式, 利用直线电机试验台对解析计算方法进行检验, 对比6~18 Hz恒滑差频率下牵引力和法向力随速度的变化; 建立了三悬浮架单节磁浮车辆动力学模型, 仿真对比了车体和悬浮架分别在1、3、5、8 kN冲击力下的振动响应; 计算了单节中低速磁浮车辆牵引特性, 分析了不同滑差频率对车辆牵引性能的影响; 综合考虑电机法向力对悬浮系统的影响和车辆的牵引需求, 提出了变滑差频率控制策略。研究结果表明: 电机牵引特性一般包括恒力区和恒功区, 恒力区初级电流最大值为390 A, 恒功区电压最大值为212 V, 恒力区牵引力变化较小, 恒功区牵引力衰减较快; 滑差频率越小, 电机起动牵引力和法向力越大, 恒力区越短, 反之亦然; 法向冲击力小于8 kN时车辆平稳性指标等级均达到优秀, 但为了减小悬浮系统的负担, 电机法向力应越小越好; 较低的滑差频率使车辆低速段牵引性能更强, 但采用较高的滑差频率有利于提高全速度范围的牵引性能; 在变滑差频率控制策略中起动滑差频率的选择综合考虑车辆的牵引性能和悬浮能力, 速度达到恒功转折点后滑差频率逐渐增大, 该策略使电机恒力区牵引力适中, 恒功区牵引力始终为电机所能发挥的最大值。   相似文献   

15.
吕卿 《交通标准化》2011,(7):142-146
在对磁浮轨道特有的短波测量进行研究的基础上,详细描述磁浮轨道无线短波测量系统的原理、构成和软件硬件设计。该系统拥有成熟的技术思路,在提高可靠性和测量效率的前提下,可同时使用多种形式进行测量,其原理和方法也可供其他测量环境借鉴。  相似文献   

16.
中低速磁浮车辆研究综述   总被引:3,自引:0,他引:3       下载免费PDF全文
基于电磁悬浮型中低速磁浮列车的工作原理,阐述了中低速磁浮各核心子系统(悬浮导向系统、牵引电机、走行机构、制动系统、轨道-桥梁结构等)的技术特征,综合分析了各子系统存在的技术问题和解决方案;梳理了 日本Linimo列车、韩国EcoBee列车、长沙磁浮快线、北京磁浮S1线和西南交通大学自主研发的(悬挂)中置式磁浮列车的发展...  相似文献   

17.
为掌握磁浮轨道梁在长期外界环境作用下产生的复杂的温度场时变规律,在长沙磁浮运营线的轨道梁内埋设温度传感器,通过1.5 a的现场温度监测,获得测点温度时程曲线,并提出了基于时间序列加法模型求解的方法. 该方法将测点温度分解成均匀温度与波动温度,并利用傅立叶曲线拟合方法研究二者的时程曲线,得到轨道梁温度场时变规律. 研究结果表明:均匀温度与当地气候变化相关,各测点均温基本相同,结构温度时变趋势可用中位值为20.41 ℃、变化幅值为12.61 ℃、初相位为20 d、周期为365 d的余弦函数表示长沙磁浮轨道梁均温时程曲线;波动温度与日照作用相关,以日为周期在0线上下波动,可用两个正弦函数分段拟合升降温时程曲线.   相似文献   

18.
磁浮列车明线交会横向振动分析   总被引:5,自引:2,他引:3  
为了研究气动力对磁浮列车运行稳定性的影响,以上海磁浮列车为研究对象,采用动网格技术,通过求解三维可压缩非定常N—S方程对磁悬浮列车在相对速度860km/h交会时的气动力进行数值模拟;同时将车体、悬浮架作为弹性体,悬挂系统作为弹簧一阻尼单元,建立了详细的系统动力学模型,对考虑列车交会瞬态压力冲击作用下的高速磁浮列车进行了横向振动分析。计算结果表明,流场数值计算出的最大压力波幅值与实车试验结果两者差距小于6%;仅考虑轨道不平顺时,磁浮列车的横向振动较小,而在考虑磁浮列车高速运行时产生的交会压力波的情况下,车体却产生了较大的横向振动,底架最大横向加速度达1.5m/s^2,经过二系悬挂的缓冲作用后振动明显减小,悬浮架最大横向振动加速度约为0.7m/s^2。  相似文献   

19.
高速、重载成为交通运输发展的主流,建立精确的汽车荷载模型描述车辆—路基路面的相互作用关系,显得十分困难,有学者提出汽车荷载的静力等效模拟和动力模拟。还有一些学者从理论上研究了交通荷载对路基的作用及交通荷载在路基中的动力响应,并在实际中验证,取得了一定成果。  相似文献   

20.
低速磁浮车辆动力学建模与导向机构仿真分析   总被引:5,自引:0,他引:5  
在分析低速磁浮车辆结构及其运动学关系基础上,利用SIMPACK软件,建立了含主动悬浮控制的76个自由度的磁浮车辆虚拟样机模型,开展了基于整车动力学的低速磁浮车辆导向机构仿真分析,研究了T形臂、横向滑台及两者之间的运动学规律。仿真结果表明:在300 m半径曲线和三转向架结构条件下,为了保证磁浮车辆顺利通过曲线,磁浮车辆导向机构前T形臂长度应大于后T形臂长度,两者比值的优化区域在1.50和2.00之间;车辆头尾T形臂相对于车体的转角幅值大小基本相同,方向相反,对应滑台的横向位移曲线形状与幅值基本相同;同一转向架前后滑台的最大横移量之比等于前后T形臂长度之比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号