首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zooplankton communities were studied in southeastern Beaufort Sea (Arctic Ocean) in September–October 2002. Cluster analysis and non-metric multidimensional scaling revealed three distinct mesozooplankton assemblages. A neritic assemblage occurred on the Mackenzie Shelf and in Franklin Bay, while distinct off-shelf assemblages prevailed in the Cape Bathurst Polynya and on the Beaufort Slope respectively. Over 95% of the mesozooplankton was comprised of eight copepod taxa. Pseudocalanus spp. contributed predominantly to the discrimination of the three assemblages and was the only significant indicator of the Shelf assemblage. Oithona similis, Oncaea borealis, Metridia longa and Calanus hyperboreus were indicators of the Polynya assemblage. Cyclopina sp. and Microcalanus pygmaeus were indicative of the overall off-shelf community (Polynya and Slope assemblages). The importance of omnivores and carnivores increased from the shelf to the polynya and the slope. Station depth and duration of reduced ice conditions during summer (< 50% ice concentration) underpinned the distribution of the assemblages (r2 = 0.71 and 0.45 respectively). The abundance of Pseudocalanus spp. was independent of depth and increased with the duration of reduced ice conditions (rs = 0.438). The abundance of Cyclopina sp., M. pygmaeus and other indicators of the offshore assemblages followed the opposite trend (rs = − 0.467 and − 0.5 respectively). Under continued climate warming, a reduction of the ice cover will affect the biogeography of mesozooplankton on and around the Mackenzie Shelf, to the potential advantage of Pseudocalanus spp. and other calanoid herbivores.  相似文献   

2.
The sea ice biota of polar regions contains numerous heterotrophic flagellates very few of which have been properly identified. The whole mount technique for transmission electron microscopy enables the identification of loricate and scaly forms. A survey of Arctic ice samples (North-East Water Polynya, NE Greenland) revealed the presence of ca. 12 taxa belonging to the phagotrophic genus Thaumatomastix (Protista incertae sedis). Species of Thaumatomastix possess siliceous body scales and one naked and one scale-covered flagellum. The presence in both Arctic samples and sea ice material previously examined from the Antarctic indicates that this genus is most likely ubiquitous in polar sea ice and may be an important component in sea ice biota microbial activities.  相似文献   

3.
In polar regions sea ice is a site of enhanced primary production during winter and provides important habitat for small grazers, such as copepods. We sampled zooplankton from the sea ice and water column throughout 2005, near Dumont d'Urville station (Terre Adélie, Antarctica). Three species of ice-associated copepods were found: two calanoid copepods Paralabidocera antarctica and Stephos longipes and the harpacticoid copepod Drescheriella glacialis. P. antarctica was the most abundant of the three and was closely associated with the sea ice during most of the year. This species had a one year life cycle with a probable over-wintering period in the sea ice as nauplii and a short copepodite phase in spring. Reproduction and spawning occurred in early summer. A comparison with two other populations (near Syowa and Davis stations) along the east coast of Antarctica showed that there was a temporal shift in the life cycles of the three populations, which was linked to variability in sea ice conditions. D. glacialis was the second most abundant copepod and was more common during the winter than during summer, indicating its preference for the sea ice habitat. In autumn, the presence of D. glacialis in the deeper part of the water column suggested that this species colonised the sea ice from the benthos. S. longipes was found only in the water column near Dumont d'Urville and was not very abundant. In Terre Adélie particular environmental conditions, such as the absence of a permanent sea ice zone throughout the year, a longer time of open water, strong katabatic winds and the presence of polynyas, have influenced both the abundance and distribution of the three common ice-associated copepods.  相似文献   

4.
In order to document long-term climate cycles and predict future climate trends for the Arctic, we need to look at the geological records to establish the link between historical and pre-historical sea-surface parameters. Dinoflagellate cysts (dinocysts) are used as proxy indicators of sea-surface parameters (temperature, salinity, sea-ice cover, primary productivity) jointly with transfer functions and a modern dinocyst reference database, to reconstruct the evolution of sea-surface conditions at decadal and millennial timescales. Here we present the surface distribution of recent dinocyst assemblages from 34 surface sediment samples collected on the Mackenzie Slope/Amundsen Gulf during the 2004 CASES (Canadian Arctic Shelf Exchange Study) cruise. Dinocyst concentrations in surface sediments are relatively high outside the Mackenzie plume area and increase gradually eastward toward Amundsen Gulf. The cysts of autotrophic dinoflagellates are dominant throughout the study area, while the maximum abundance of heterotrophic taxa is found within the Mackenzie plume. Hierarchical clustering analyses allowed defining two dinocyst assemblages. Assemblage I is located on the Mackenzie Slope and southern Amundsen Gulf, while Assemblage II is located within the Cape Bathurst Polynya area in northern Amundsen Gulf. Both assemblages are dominated by Operculodinium centrocarpum, but are distinguished on the basis of the relative abundance of Islandinium minutum, a taxon generally associated with sea ice. I. minutum is found in lower abundance in the Cape Bathurst Polynya.  相似文献   

5.
Distributions of the radionuclides 210Pb and 239,240Pu in sediment cores from the Northeast Water Polynya, Greenland, showed that these nuclides reached depths of 5–15 cm by particle mixing and sediment accumulation. End-member average values of the particle mixing coefficient and sediment accumulation rate were 0.13 cm2 y−1 and 0.06 cm y−1, obtained from the 210Pb profiles by assuming that each process is dominant relative to the other. Both 210Pb and 239,240Pu were measured on four cores; using the Pu data to constrain mixing rates produced corrected sediment accumulation rates that were 20–80% of the values calculated by neglecting mixing. Organic carbon burial in the polynya sediments was ≤0.4 mmol m−2 d−1, based on measured POC values at depth in the sediments and sediment accumulation rates corrected for mixing. This value is about 1% of the independently measured POC flux leaving the euphotic zone and compares with benthic carbon remineralization rates of 7% calculated by others from O2 uptake in the sediments.The inventories of excess 210Pb in the sediments ranged from 6 to 28 dpm cm−2. Relative to the atmospheric input of 210Pb and in situ production from decay of 226Ra, approximately 5 dpm cm−2 of 210Pb was being removed from the water column. The difference between the removal from the water column and sediment inventories suggests a net import of 210Pb to the polynya. This may occur by input of dissolved 210Pb from offshore waters or by input of 210Pb carried by sea ice. Particulate matter in land-derived fast ice adjacent to the polynya contained 330 ± 14 dpm of excess 210Pb g−1. If particles transported in sea ice are comparable to those extracted from fast ice, then sea ice transport into the polynya followed by melting may be an important source of excess 210Pb to the area. Fast ice also may contribute 210Pb if portions break off and melt within the polynya, as occurred in 1993.  相似文献   

6.
A summary of the seasonal development of the Northeast Water Polynya ice cover characteristics is presented. This is based primarily on satellite remote sensing observations, with some in situ measurements, including both new and published data.  相似文献   

7.
On the basis of classical hydrographic and nutrient analysis, water masses and their spreading in the Northeast Water (NEW) Polynya were investigated from RV Polarstern ARK IX (1993) data. It is shown that a local water body, East Greenland Shelf Water, occupies the top layer in the NEW and that this water is different from Polar Water exported from the Arctic Polar Ocean. Polar Water, as well as the underlying and also imported Knee Water, follows a path crossing the broad East Greenland Shelf diagonally from northeast to southwest but both waters do not enter the NEW Polynya. Intermediate waters in the NEW are also modified locally. A local source of silicate, contributing to an intermediate silicate maximum in the trough system, is identified in the centre of the anticyclonic movement over Belgica Bank. Furthermore, it is confirmed that there is no one-directional through-flow of deeper waters in the trough system. Belgica Trough and Westwind Trough contain two different water types of Atlantic origin, which are not directly related to Return Atlantic Waters. The deeper waters in Norske Trough are supplied from Belgica Trough over a sill of about 250 m depth.  相似文献   

8.
Multidisciplinary, marine ecological observations were conducted at the shallow water edge of the Northeast Water in June, 1993. Although variable in size and shape, a small polynya was constantly present at Eskimonaes, at the fast-ice edge of Ingolfsfjord. A shallow stratified layer developed at the water sufface at negative water and air temperatures—an effect of sea ice melting in cold water early in the season. Nutrients were recorded in considerable quantities, although by mid July NO3 had become depleted. The chlorophyll and phytoplankton maxima at 8–12 m depth had peak values of 2 mg chl a m−3, typical for Arctic algal blooms. The phytoplankton included over 90 species and was dominated by the Fragillariopsis group. Zooplankton was poor in biomass and density, but over 23 taxa were found, with the copepods Oithona similis and Pseudocalanus acuspes being numerically dominant. Sedimentation was approximately 0.2 g dry weight m−2 d−1 and suspended matter concentrations ranged from 4 to 19 mg l−1. The benthos was represented by hard bottom forms only, with a surprisingly dense cover of macrophytes. Juvenile sea urchins (Strongylocentrotus droebachiensis), brittle stars (Ophiocten sericeum) and amphipods were dominant. Higher trophic levels were represented by benthic feeders, such as eiders and walruses. The area observed was more similar to high Arctic fjord ecosystems than to the offshore central Northeast Water polynya.  相似文献   

9.
The nutrient distribution in the Northeast Water Polynya (NEW) was investigated intensively between the end of May and the beginning of August 1993 during the R/V Polarstern cruise ARK IX. The major characteristics were low initial nitrate concentrations (ca. 4 μM) in the surface mixed layer of the East Greenland Shelf Water, accompanied by high silicate values (ca. 10–14 μM). These concentrations were not reduced by phytoplankton growth. Silicate was rather homogeneously distributed in the entire water column, whereas nitrate increased continuously with depth to about 13 μM. Phosphate concentrations were about 1.1 μM and had a similar distribution to that of silicate. During the course of the summer, nutrients became depleted, and nitrate was exhausted in large parts of the NEW. Silicate was reduced to values of less than 2 μM at some stations which implies that diatom growth continued despite nitrate depletion, ammonium serving as a nitrogen source. The polynya is fertilised by water with the initial nutrient concentrations downstream of the Norske Øer Ice Shelf. This process continuously supplies nutrients to the surface throughout the year and these are transported northward by the anticyclonic surface circulation following the topography of the trough system. The northern boundary of this tongue of relatively nutrient-rich water is controlled by the uptake of nutrients by phytoplankton in summer. Its extemsion is variable due to interactions between biological processes, circulation and ice cover. In the Ob Bank region the nutrient distribution can be altered by the inflow of Polar Water from the north when strong northerly winds prevail as happened during the first part of the study.  相似文献   

10.
Two hydrobiological transects across the East Greenland Shelf and the open waters of Fram Strait in summer were chosen to illustrate the distribution and production of phyto- and zooplankton in relation to water masses and ice cover. The parameters used were temperature and salinity, inorganic nutrients, chlorophyll a, primary production, phytoplankton species composition, abundance of the dominant herbivorous copepods Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa and egg production of C. finmarchicus and C. glacialis. Grazing impact of copepodites and adults of these four species was modelled for each station by using egg production rates as an index of growth. Seasonal development of plankton communities was closely associated with the extent of the ice cover, hydrographic conditions and the water masses typical of the different hydrographic domains. Four regions were identified from their biological activities and physical environment: The Northeast Water polynya on the East Greenland Shelf, with a springbloom of diatoms and active reproduction of herbivorous copepods. The pack ice region, dominated by small flagellates and negligible grazing activities. The marginal ice zone, with high variability and strong gradients of autotroph production related to eddies and ice tongues, an active microbial loop and low egg production. The open water, with high station-to-station variability of most of the parameters, probably related to hydrographic mesoscale activities. Here, Phaeocystis pouchetii was a prominent species in the phytoplankton communities. Its presence may at least partly be responsible for the generally low egg production in the open waters. Grazing impact on primary production was always small, due to low zooplankton biomass in the polynya and due to low ingestion in the remaining regions.  相似文献   

11.
The annual pattern of vertical particle flux in the Northeast Water (NEW) Polynya was recorded from August 1992 to July 1993 by means of moored time-series sediment traps. A distinct seasonal pattern in sedimentation was observed, with highest flux rates during August–October 1992. During this time 40–70% of the annual total sedimented matter (dry weight, DW) and the components, carbonate, particulate organic carbon and nitrogen (POC and PON), particulate biogenic silica (bPSi) and biogenic matter were recorded: 9.83, 2.04, 1.03, 0.69, 0.14 and 5.55 g m−2, respectively. Microscopic analysis of the particles revealed that diatoms contributed about 10% of the POC flux, but up to 40% of the POC flux originated from the houses and faeces of appendicularians during the period of highest flux rates. In contrast, faecal pellets were only a minor component of sedimenting POC after the opening of the polynya in June 1993. During this period a sedimentation event of Melosira arctica dominated the microscopically recognizable fraction of the POC. Following the low winter values a significant deviation in POC flux in March documented an early onset of plankton growth and a rapid response to the formation of a winter polynya paralleled by a local change in ice conditions. This was supported by the stable nitrogen isotope signature of the sedimented matter, also indicating an early onset of plankton production in the NEW Polynya. However, the overall amplitude of the Δ15N signal in the sinking particles showed only small variations (<4‰) and was significantly below the amplitude observed in sedimented material from the Northern North Atlantic ( 8‰). The composition of the sedimented matter, comprising mainly fast sinking particles (appendicularian houses, faecal peliets and Melosira aggregates) lead us to conclude that sedimentation in the NEW Polynya was spatially heterogeneous.  相似文献   

12.
Protist abundance and taxonomic composition were determined in four development stages of newly formed sea ice (new ice, nilas, young ice and thin first-year ice) and in the underlying surface waters of the Canadian Beaufort Sea from 30 September to 19 November 2003. Pico- and nanoalgae were counted by flow cytometry whereas photosynthetic and heterotrophic protists ≥ 4 µm were identified and counted by inverted microscopy. Protists were always present in sea ice and surface water samples throughout the study period. The most abundant protists in sea ice and surface waters were cells < 4 µm. They were less abundant in sea ice (418–3051 × 103 cells L− 1) than in surface waters (1393–5373 × 103 cells L− 1). In contrast, larger protists (≥ 4 µm) were more abundant in sea ice (59–821 × 103 cells L− 1) than in surface waters (22–256 × 103 cells L− 1). These results suggest a selective incorporation of larger cells into sea ice. The ≥ 4 µm protist assemblage was composed of a total number of 73 taxa, including 12 centric diatom species, 7 pennate diatoms, 11 dinoflagellates and 16 flagellates. The taxonomic composition in the early stage of ice formation (i.e., new ice) was very similar to that observed in surface waters and was composed of a mixed population of nanoflagellates (Prasinophyceae and Prymnesiophyceae), diatoms (mainly Chaetoceros species) and dinoflagellates. In older stages of sea ice (i.e., young ice and thin first-year ice), the taxonomic composition became markedly different from that of the surface waters. These older ice samples contained relatively fewer Prasinophyceae and more unidentified nanoflagellates than the younger ice. Diatom resting spores and dinoflagellate cysts were generally more abundant in sea ice than in surface waters. However, further studies are needed to determine the importance of this winter survival strategy in Arctic sea ice. This study clearly shows the selective incorporation of large cells (≥ 4 µm) in newly formed sea ice and the change in the taxonomic composition of protists between sea ice and surface waters as the fall season progresses.  相似文献   

13.
Spring blooms of bottom ice algae are a common feature of landfast congelation ice in polar regions. Because ice algae are usually associated with a substrate, their population dynamics can be followed with considerable confidence. Although ice algal dynamics are closely related to irradiance, their dynamics and distributions are influenced by other abiotic and biotic factors. Ice algal abundance varies horizontally over all scales examined. Factors such as grazing and nutrient availability may contribute to local and geographic differences. Loss terms for most sea ice assemblages are largely unquantified. Ice algal biomass is most concentrated near the ice-water interface in spring.Environmental factors affecting ice algal abundance and productivity are considered here, emphasizing recent results from several well-studied sites. Biomass accumulation, growth rates and productivity have been documented for spring blooms of bottom interstitial and sub-ice assemblages. On an areal basis biomass accumulation in bottom ice assemblages can be comparable with planktonic systems. At low ambient temperatures and irradiances average specific growth rates (≤ 0.25 d−1) and production rates (≤ 1.0 mg C mg Chl−1 h−1) for ice algae are low. Current methods of measuring productivity are compared. Results are consistently low but variable with little systematic difference among them. At present, apparent differences in productivity between bottom ice assemblages in the Arctic and Antarctic, or among different antarctic assemblages, are so confounded by methodological and other sources of variability that no firm differences can be detected.  相似文献   

14.
In the summer of 1992, four current meter moorings were deployed in and later retrieved from the Northeast Water (NEW) polynya on the East Greenland Shelf by the USCGC Polar Sea. The moorings provided hourly temperature, salinity and current data for approximately one year. In the NEW, the circulation intensified and steadiness increased during winter. This intensification was most readily observed at 150 m on the southern side of Westwind trough. The surface layer freshened from summer through December due to ice-melt and freshwater runoff mixing down to at least 75 m. From December through early spring, salinity increased probably due to brine rejected during ice formation. Wintertime events showed water at 75 m with temperatures at the freezing point. Knee Water (KW) was not observed in the current meter data. However, a warmer and fresher than KW watermass was observed at 150 m over the shelf and may result from mixing outside the NEW among KW and the major water masses influencing the region. Polar Water and Atlantic Intermediate Water. Several short-lived events of 3 to 7 days duration perturbed the T-S character at each of the current meters. We believe that these T-S shifts were anticyclonic eddies advecting through the NEW polynya. During such perturbations, T-S values found generally at 75 m were observed at 150 m and T-S values generally at 150 m were observed at 250 m. On the northern side of the Westwind trough, the current meter data provided direct evidence for westward flow into the western extent of the trough at a depth of 250 m. This southwesterly current along the northwest slope of the trough at 250 m is in agreement with the summertime ADCP measurements made in 1992 aboard Polar Sea, and is consistent with the flow inferred from summer hydrography measured from Polarstern in 1993.  相似文献   

15.
The distribution at sea of seabirds was studied in the North-East Water (NEW) polynya, Greenland, during transect counts in the summers of 1991, 1992 and 1993 on board the ice-breaking RVs Polarstern and Polar Sea. Data collected within the polynya ‘box’ (78–82°N; 5–18°W) concern observations of 8000 birds counted during 1350 half-hour counts. Distribution is presented as density (N/km2) and calculated daily food intake. Five bird species were selected for discussion, representing more than 95% of the total numbers encountered: Fulmar (Fulmarus glacialis), Ivory Gull (Pagophila eburnea), Kittiwake (Rissa tridactyla), Glaucous Gull (Larus hyperboreus) and Ross's Gull (Rhodostethia rosea). For these species, densities are comparable in the NE Greenland polynya and in other European Arctic seas. The main difference is the absence in NEW of the species playing the main role in Arctic seas: Brünnich's Guillemot (Uria lomvia) and Little Auk (Alle alle). In the absence of fish-eating birds and of birds consuming zooplankton in the water column, the NEW polynya ecosystem is thus dominated by surface feeders and, closer to the coast, by benthic feeders like eiders, Somateria mollissima and S. spectabilis, and walrus, Odobenus rosmarus. The density and daily food intake for all seabirds are one order of magnitude lower in the polynya than in the Arctic seas. The distribution and abundance of seabirds in the NEW polynya seems to reflect a very low density of pelagic fish and Zooplankton in the water column, while Zooplankton must be present at ‘normal’ concentrations in the upper layer.  相似文献   

16.
We present a coupled sea ice–ocean-biological (including ice algae) model in the Arctic Ocean. The 1D model was developed and implemented on the Canadian Beaufort Sea shelf to examine the importance of different physical processes in controlling the timing and magnitude of primary production and biogenic particle export over an annual cycle (1987). Our results show that the snow and sea ice cover melt and/or break-up controls the timing of the phytoplankton bloom but primary producers (ice algae and phytoplankton) on the outer shelf are essentially nutrient limited. The total annual primary production (22.7 to 27.7 g-C m? 2) is thus controlled by nutrient “pre-conditioning” in the previous fall and winter and by the depth of wind mixing that is controlled in part by the supply of fresh water at the end of spring (ice melt or runoff). The spring bloom represents about 40% of the total annual primary production and occurs in a period of the year when sampling is often lacking. Time interpolation of observed values to obtain total annual primary production, as done in many studies, was shown to lead to an underestimation of the actual production. Our simulated ratios of export to primary production vary between 0.42 and 0.44.  相似文献   

17.
《Journal of Marine Systems》2006,59(1-2):159-172
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1−5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a.  相似文献   

18.
赵津  杨敏 《中国海事》2013,(7):53-54,59
文中分析了东北航道沿途各海域的特点,并通过收集、整理国内外专家对北极东北航道海冰变化规律的研究成果,给出了北极东北航道关键海区及冰情变化趋势。  相似文献   

19.
The classic view of the Antarctic pelagic system has suggested that food web dynamics are dominated by the diatom-krill food web link. Recent observations, however, have indicated that this is an oversimplification and that the antarctic food web has a complexity similar to that found in lower latitude systems. More specifically, small particulate feeding protozoans appear to have a much greater importance than was previously assumed.Only a few studies have been sufficiently extensive to characterize the Antarctic pelagic protozoan assemblage. These indicate that heterotrophic flagellates (dinoflagellates and other heterotrophic nanoplankton) and ciliates (mostly non-loricate oligotrichs) dominate the protozooplankton assemblages in surface waters. The combined biomass of protozooplankton has been reported to comprise from < 7 to > 75% of the total nano- and microplankton biomass depending on season and location. Protozoans are also found in sea ice communities where their abundances exceed those typically found in the plankton. Several protozoan species occupy both ice and water habitats, suggesting that seasonally melting sea ice may be the source of ice-edge protozooplankton assemblages.The feeding rates of protozooplankton in Antarctic waters are poorly documented. Consumption estimates based on clearance rates and some preliminary grazing experiments, however, indicate that the protozooplankton should be capable of utilizing a significant proportion of the daily primary and bacterioplankton production. Protozoans may contribute to vertical flux, but present evidence suggests that their contribution will be lower than from other sources.  相似文献   

20.
Climatic changes in the Northern Hemisphere have led to remarkable environmental changes in the Arctic Ocean, which is surrounded by permafrost. These changes include significant shrinking of sea-ice cover in summer, increased time between sea-ice break-up and freeze-up, and Arctic surface water freshening and warming associated with melting sea-ice, thawing permafrost, and increased runoff. These changes are commonly attributed to the greenhouse effect resulting from increased atmospheric carbon dioxide (CO2) concentration and other non-CO2 radiatively active gases (methane, nitrous oxide). The greenhouse effect should be most pronounced in the Arctic where the largest air CO2 concentrations and winter–summer variations in the world for a clean background environment were detected. However, the air–land–shelf interaction in the Arctic has a substantial impact on the composition of the overlying atmosphere; as the permafrost thaws, a significant amount of old terrestrial carbon becomes available for biogeochemical cycling and oxidation to CO2. The Arctic Ocean's role in determining regional CO2 balance has been ignored, because of its small size (only  4% of the world ocean area) and because its continuous sea-ice cover is considered to impede gaseous exchange with the atmosphere so efficiently that no global climate models include CO2 exchange over sea-ice. In this paper we show that: (1) the Arctic shelf seas (the Laptev and East-Siberian seas) may become a strong source of atmospheric CO2 because of oxidation of bio-available eroded terrestrial carbon and river transport; (2) the Chukchi Sea shelf exhibits the strong uptake of atmospheric CO2; (3) the sea-ice melt ponds and open brine channels form an important spring/summer air CO2 sink that also must be included in any Arctic regional CO2 budget. Both the direction and amount of CO2 transfer between air and sea during open water season may be different from transfer during freezing and thawing, or during winter when CO2 accumulates beneath Arctic sea-ice; (4) direct measurements beneath the sea ice gave two initial results. First, a drastic pCO2 decrease from 410 μatm to 288 μatm, which was recorded in February–March beneath the fast ice near Barrow using the SAMI-CO2 sensor, may reflect increased photosynthetic activity beneath sea-ice just after polar sunrise. Second, new measurements made in summer 2005 beneath the sea ice in the Central Basin show relatively high values of pCO2 ranging between 425 μatm and 475 μatm, values, which are larger than the mean atmospheric value in the Arctic in summertime. The sources of those high values are supposed to be: high rates of bacterial respiration, import of the Upper Halocline Water (UHW) from the Chukchi Sea (CS) where values of pCO2 range between 400 and 600 μatm, a contribution from the Lena river plume, or any combination of these sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号