首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

2.
This paper explores whether the risk of a toxic release during transport is greater in poor and minority neighborhoods using a combination of mapping and statistical methods. Cluster analysis is used to examine the density of facilities and transport spill events as well as test for the spatial covariance between facilities and spills. Strong clustering of transport spills is evident, as well as clustering between factory sites and transport spills. A spatial model demonstrates raised rates of transport spills surrounding clusters of toxic firms. Most spills in Los Angeles occurred within 2 km of an intermodal facility. The last step of the analysis compares risk and facility clustering between neighborhoods and socio-economic groups, finding that hazmat spills during transport disproportionately occur in Latino neighborhoods in Los Angeles. The results clarify the spatial distribution of risk and nuisance from freight in urban landscapes.  相似文献   

3.
Traffic volume data are key inputs to many applications in highway design and planning. But these data are collected in only a limited number of road locations due to the cost involved. This paper presents an approach for estimating daily and hourly traffic volumes on intercity road locations combining clustering and regression modelling techniques. With the aim of applying the procedure to any road location, it proposes the use of roadway attributes and socioeconomic characteristics of nearby cities as explanatory variables, together with a set of previously discovered patterns with the hourly traffic percent distribution. Test results show that the proposed approach significantly produces accurate estimates of daily volumes for most locations. The accuracy at hourly level is a bit more reduced but, for periods when traffic is significant, more than half of the estimates are within 20% of absolute percentage error. Moreover, the main peak period is approximately identified for most cases. These findings together with its great applicability make this approach attractive for planners when no traffic data are available and an estimate is helpful.  相似文献   

4.
This paper presents a trajectory clustering method to discover spatial and temporal travel patterns in a traffic network. The study focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating temporal traffic patterns of each spatial group. The main contribution of this paper is the development of a systematic framework for clustering and classifying vehicle trajectory data, which does not require a pre-processing step known as map-matching and directly applies to trajectory data without requiring the information on the underlying road network. The framework consists of four steps: similarity measurement, trajectory clustering, generation of cluster representative subsequences, and trajectory classification. First, we propose the use of the Longest Common Subsequence (LCS) between two vehicle trajectories as their similarity measure, assuming that the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential interactions between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the LCS-based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially distinct traffic stream clusters, which together provide an informative and succinct representation of major network traffic streams. Next, we introduce the notion of Cluster Representative Subsequence (CRS), which reflects dense road segments shared by trajectories belonging to a given traffic stream cluster, and present the procedure of generating a set of CRSs by merging the pairwise LCSs via hierarchical agglomerative clustering. The CRSs are then used in the trajectory classification step to measure the similarity between a new trajectory and a cluster. The proposed framework is demonstrated using actual vehicle trajectory data collected from New York City, USA. A simple experiment was performed to illustrate the use of the proposed spatial traffic stream clustering in application areas such as network-level traffic flow pattern analysis and travel time reliability analysis.  相似文献   

5.
This paper focuses on the problem of estimating historical traffic volumes between sparsely-located traffic sensors, which transportation agencies need to accurately compute statewide performance measures. To this end, the paper examines applications of vehicle probe data, automatic traffic recorder counts, and neural network models to estimate hourly volumes in the Maryland highway network, and proposes a novel approach that combines neural networks with an existing profiling method. On average, the proposed approach yields 24% more accurate estimates than volume profiles, which are currently used by transportation agencies across the US to compute statewide performance measures. The paper also quantifies the value of using vehicle probe data in estimating hourly traffic volumes, which provides important managerial insights to transportation agencies interested in acquiring this type of data. For example, results show that volumes can be estimated with a mean absolute percent error of about 21% at locations where average number of observed probes is between 30 and 47 vehicles/h, which provides a useful guideline for assessing the value of probe vehicle data from different vendors.  相似文献   

6.
The ozone weekend effect refers to the counterintuitive observations showing weekend ozone concentrations frequently to be higher than or comparable to those observed on weekdays. Ozone dynamics are closely linked to the timing, magnitude and fleet mix of transportation activities, primary sources of ozone precursor emissions. To examine the effects of traffic activity on the ozone weekend effect, a statistical analysis was conducted of the weekly patterns of time dependent light-duty vehicle and heavy-duty truck volumes observed at 27 weigh-in-motion stations in southern California. The results show statistically significant variations in traffic flows by day of week, by vehicle type, and by location with respect to the Los Angeles metropolitan area. These variations in traffic, when converted to variations in running exhaust emissions, tend to support four of the seven California Air Resources Board’s ozone weekend effect hypotheses.  相似文献   

7.
When translating travel demand model output to photochemical model input, period-based network assignment volumes must be converted to gridded-hourly vehicle emissions. A post-processor, such as the California Direct Travel Impact Model (DTIM2), is frequently used to disaggregate the period-based travel demand assignments to the fine grained spatial and temporal resolution required by the photochemical models. A recent theoretical enhancement proposed refining the temporal and spatial resolutions of travel demand model predictions using observed count data. This method provides a technique for disaggregating the period-based travel demand model assignments (e.g., AM peak, PM peak) into the hourly summaries required by most photochemical model (Lin and Niemeier, 1997). In this study we present a methodological framework for applying the new theory and discuss the results of a large-scale application empirical comparison between the standard and proposed methods for estimating regional mobile emissions in Sacramento, California. The standard method produced slightly higher estimates of daily emissions (about 1%) when compared to the emissions estimated using observed count data. However, the two approaches produced hourly emissions estimates that differed by as much as 15% in some hours.  相似文献   

8.
A new convex optimization framework is developed for the route flow estimation problem from the fusion of vehicle count and cellular network data. The issue of highly underdetermined link flow based methods in transportation networks is investigated, then solved using the proposed concept of cellpaths for cellular network data. With this data-driven approach, our proposed approach is versatile: it is compatible with other data sources, and it is model agnostic and thus compatible with user equilibrium, system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduction scheme, we design a projected gradient algorithm suitable for the proposed route flow estimation problem. The algorithm solves a block isotonic regression problem in the projection step in linear time. The accuracy, computational efficiency, and versatility of the proposed approach are validated on the I-210 corridor near Los Angeles, where we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular towers covering a large network of highways and arterials with more than 20,000 links. In contrast to long-term land use planning applications, we demonstrate the first system to our knowledge that can produce route-level flow estimates suitable for short time horizon prediction and control applications in traffic management. Our system is open source and available for validation and extension.  相似文献   

9.
Despite the pivotal importance of link performance functions to models of transport systems, relatively little work has been done on practical aspects of estimating these functions from observed data. Furthermore it is difficult to find any examples in the literature of estimated urban link performance functions faithfully reproducing theoretical travel time-flow relationships. One reason for the paucity of research in this area is the difficulty and expense of obtaining the requisite data. The increase in automatic collection of traffic flow data goes part way to resolving this problem, but matching such flows to manually recorded travel times can present considerable statistical difficulties in the estimation procedure. This paper considers the estimation of link performance functions from a combination of automatically recorded traffic counts and travel collected by hand, using a non-standard statistical methodology. The study is motivated by a set of data of precisely this type, from the UK city of Leicester.  相似文献   

10.
We develop theoretical and computational tools which can appraise traffic flow models and optimize their performance against current time-series traffic data and prevailing conditions. The proposed methodology perturbs the parameter space and undertakes path-wise analysis of the resulting time series. Most importantly the approach is valid even under non-equilibrium conditions and is based on procuring path-space (time-series) information. More generally we propose a mathematical methodology which quantifies traffic information loss.In particular the method undertakes sensitivity analysis on available traffic data and optimizes the traffic flow model based on two information theoretic tools which we develop. One of them, the relative entropy rate, can adjust and optimize model parameter values in order to reduce the information loss. More precisely, we use the relative entropy rate as an information metric between time-series data and parameterized stochastic dynamics describing a microscopic traffic model. On the other hand, the path-space Fisher Information Matrix, (pFIM) reduces model complexity and can even be used to control fidelity. This is achieved by eliminating unimportant model parameters or their combinations. This results in easier regression of parametric models with a smaller number of parameters.The method reconstructs the Markov Chain and emulates the traffic dynamics through Monte Carlo simulations. We use the microscopic interaction model from Sopasakis and Katsoulakis (2006) as a representative traffic flow model to illustrate this parameterization methodology. During the comparisons we use both synthetic and real, rush-hour, traffic data from highway US-101 in Los Angeles, California.  相似文献   

11.
In Los Angeles emphasis in transportation planning has recently shifted from facility construction to transportation system management and the control of land use with the goal of slowing the growth in traffic congestion. This paper critically examines several recent transportation growth management strategies in Los Angeles, and concludes that though they were well intentioned, they might not lead to the intended consequences.  相似文献   

12.
Cycling is attracting renewed attention as a mode of transport in western urban environments, yet the determinants of usage are poorly understood. In this paper we investigate some of these using intraday bicycle volumes collected via induction loops located at ten bike paths in the city of Melbourne, Australia, between December 2005 and June 2008. The data are hourly counts at each location, with temporal and spatial disaggregation allowing for the impact of meteorology to be measured accurately for the first time. Moreover, during this period petrol prices varied dramatically and the data also provide a unique opportunity to assess the cross-price elasticity of demand for cycling. Over-dispersed Poisson regression models are used to model volumes at each location and at each hour of the day. Seasonality and the impact of weather conditions are modelled as semiparametric and estimated using recently developed multivariate penalized spline methodology. Unlike previous studies that use aggregate data, the empirical results show a substantial meteorological and seasonal component to usage. They also suggest there was substitution into cycling as a mode of transport in response to increases in petrol prices, particularly during peak commuting periods and by commuters originating in wealthy and inner city neighbourhoods. Last, we extend the approach to a multivariate longitudinal count data model using a Gaussian copula estimated by Bayesian data augmentation. We find first order serial dependence in the hourly volumes and a ‘return trip’ effect in daily bicycle commutes.  相似文献   

13.
Existing methods for calibrating link fundamental diagrams (FDs) often focus on a limited number of links and use grouping strategies that are largely dependent on roadway physical attributes alone. In this study, we propose a big data-driven two-stage clustering framework to calibrate link FDs for freeway networks. The first stage captures, under normal traffic state, the variations of link FDs over multiple days based on which links are clustered in the second stage. Two methods, i.e. the standard k-means algorithm combined with hierarchical clustering and a modified hierarchical clustering based on the Fréchet distance, are applied in the first stage to obtain the FD parameter matrix for each link. The calibrated matrices are input into the second stage where the modified hierarchical clustering is re-employed as a static approach resulting in multiple clusters of links. To further consider the variations of link FDs, the static approach is extended by modifying the similarity measure through the principle component analysis (PCA). The resulting multivariate time-series clustering models the distributions of the FD parameters as a dynamic approach. The proposed framework is applied on the Melbourne freeway network using one-year worth of loop detector data. Results have shown that (a) similar roadway physical attributes do not necessarily result in similar link FDs, (b) the connectivity-based approach performs better in clustering link FDs as compared with the centroid-based approach, and (c) the proposed framework helps achieving a better understanding of the spatial distribution of links with similar FDs and the associated variations and distributions of the FD parameters.  相似文献   

14.
This paper proposes a reformulation of count models as a special case of generalized ordered-response models in which a single latent continuous variable is partitioned into mutually exclusive intervals. Using this equivalent latent variable-based generalized ordered response framework for count data models, we are then able to gainfully and efficiently introduce temporal and spatial dependencies through the latent continuous variables. Our formulation also allows handling excess zeros in correlated count data, a phenomenon that is commonly found in practice. A composite marginal likelihood inference approach is used to estimate model parameters. The modeling framework is applied to predict crash frequency at urban intersections in Arlington, Texas. The sample is drawn from the Texas Department of Transportation (TxDOT) crash incident files between 2003 and 2009, resulting in 1190 intersection-year observations. The results reveal the presence of intersection-specific time-invariant unobserved components influencing crash propensity and a spatial lag structure to characterize spatial dependence. Roadway configuration, approach roadway functional types, traffic control type, total daily entering traffic volumes and the split of volumes between approaches are all important variables in determining crash frequency at intersections.  相似文献   

15.
The origin–destination matrix is an important source of information describing transport demand in a region. Most commonly used methods for matrix estimation use link volumes collected on a subset of links in order to update an existing matrix. Traditional volume data collection methods have significant shortcomings because of the high costs involved and the fact that detectors only provide status information at specified locations in the network. Better matrix estimates can be obtained when information is available about the overall distribution of traffic through time and space. Other existing technologies are not used in matrix estimation methods because they collect volume data aggregated on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones sometimes cannot provide location accuracy for estimating flows on single links but do so on groups of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper presents a methodology adapted to the concept of volume aggregated on groups of links in order to use any available volume data source in traditional matrix estimation methodologies. To calculate volume data, we have used a model that has had promising results in transforming phone call data into traffic movement data. The proposed methodology using vehicle volumes obtained by such a model is applied over a large real network as a case study. The experimental results reveal the efficiency and consistency of the solution proposed, making the alternative attractive for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Growth in international trade and changing patterns of production have resulted in greatly increased volumes of freight traffic in urban areas. Metropolitan areas serving as major nodes within the international trade network are particularly affected. In California, state regulation was imposed on port operations in an effort to mitigate congestion and air pollution associated with increased port-related trade. This paper presents an evaluation of the outcomes of California Assembly Bill (AB) 2650 at the Ports of Los Angeles and Long Beach. The legislation permitted terminals to adopt either gate appointments or off-peak operating hours as a means of reducing truck queues at gates. There is no evidence of reduced queuing or transaction times, and hence that AB 2650 did not result in reduced truck emissions.  相似文献   

17.
This research involved the development of a new traffic assignment model consisting of a set of procedures for an urbanized area with a population of 172,000. Historical, social, and economic data were used as input to conventional trip generation and trip distribution models to produce a trip table for network assignment. This fixed table was divided into three trip types: external-external trips, external-internal trips, and internal-internal trips. The methodology used to develop the new traffic assignment model assigned each of the trip types by varying the diversion of trips from the minimum path. External-external trips were assigned on a minimum path routing and external-internal trips were assigned with a slight diversion from the minimum path. Internal-internal trips were assigned with more diversion than external-internal trips and adjusted by utilizing iterative volume restraint and incremental link restraint. A statistical analysis indicated that assigning trips by trip types using trip diversion and volume and link restraint produces a significant improvement in the accuracy of the assigned traffic volumes.  相似文献   

18.
Characteristics of time gaps (that is, the time separation between the rear of the lead vehicle and the front of the following vehicle) in congested freeway flow provide an important link between microscopic and macroscopic traffic flow. Although individual time gaps are a microscopic phenomenon, average time gaps can easily be determined from commonly collected macroscopic traffic flow data. Data from San Diego freeways and the Queen Elizabeth Way in Ontario, Canada are analyzed to show that average time gaps in congested flow are essentially constant with respect to speed; that they vary considerably between lanes at a single location and, for the same lane, from site to site; that they display considerable scatter; and that at some sites there is a distinct increase in average time gaps in the median lane in the transition to congested flow but at others there is no change or a slight reduction. The variability of average time gaps is not easily explained, although differences in driver populations may partly explain differences among different sites. Hysteresis due to acceleration and deceleration does not appear to be an explanation for the high degree of scatter in average time gaps, since no positive correlation was found between speed changes and average time gaps.  相似文献   

19.
Abstract

Estimation of the origin–destination (O–D) trip demand matrix plays a key role in travel analysis and transportation planning and operations. Many researchers have developed different O–D matrix estimation methods using traffic counts, which allow simple data collection as opposed to the costly traditional direct estimation methods based on home and roadside interviews.

In this paper, we present a new fuzzy model to estimate the O–D matrix from traffic counts. Since link data only represent a snapshot situation, resulting in inconsistency of data and poor quality of the estimated O–Ds, the proposed method considers the link data as a fuzzy number that varies within a certain bandwidth. Shafahi and Ramezani's fuzzy assignment method is improved upon and used to assign the estimated O–D matrix, which causes the assigned volumes to be fuzzy numbers similar to what is proposed for observed link counts. The shortest path algorithm of the proposed method is similar to the Floyd–Warshall algorithm, and we call it the Fuzzy Floyd–Warshall Algorithm. A new fuzzy comparing index is proposed by improving the fuzzy comparison method developed by Dubois and Prade to estimate and compare the distance between the assigned and observed link volumes. The O–D estimation model is formulated as a convex minimization problem based on the proposed fuzzy index to minimize the fuzzy distance between the observed and assigned link volumes. A gradient-based method is used to solve the problem. To ensure the original O–D matrix does not change more than necessary during the iterations, a fuzzy rule-based approach is proposed to control the matrix changes.  相似文献   

20.
This paper estimates the traffic volume and travel time effects of the road congestion pricing implemented on the San Francisco-Oakland Bay Bridge. I employ both difference-in-differences and regression discontinuity approaches to analyze previously unexploited data for the two years spanning the price change and obtain causal estimates of the hourly average treatment effects of the policy. I find evidence of peak spreading in traffic volume and decreases in travel time during peak hours. I also find suggestive evidence of substitution to a nearby bridge and decreases in travel time variability. In addition, I calculate own- and cross-price elasticities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号