首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes tailpipe emission results generated by the Vehicle Performance and Emissions Monitoring system (VPEMS). VPEMS integrates on‐board emissions and vehicle/driver performance measurements with positioning and communications technologies, to transmit a coherent spatio‐temporally referenced dataset to a central base station in near real time. These results focus on relationships between tailpipe emissions of CO, CO2, NOx and speed and acceleration. Emissions produced by different driving modes are also presented. Results are generally as one would expect, showing variation between vehicle speed, vehicle acceleration and emissions. Data is based upon a test run in central London on urban streets with speeds not exceeding about 65 km/h. The results presented demonstrate the capabilities of the system. Various issues remain with regard to validation of the data and expansion of the system capability to obtain additional vehicle performance data.  相似文献   

2.
Comparing vehicle emissions inspection results with vehicle owner income shows that the Arizona vehicle emissions inspection program constrains the vehicle repair decisions of people in the low end of the income distribution more than people in the high end. Individuals who live in areas with lower annual income are both (i) more likely to drive vehicles that fail emissions inspections at a higher average rate, and (ii) more likely to fail emissions inspections conditional on vehicle characteristics. The top income quintile fails emissions inspections 20% less often than the bottom income quintile even when controlling for observable vehicle characteristics. This implies that owner characteristics, in addition to observable vehicle characteristics, have a non-negligible impact on vehicle emissions rates. Therefore, the impact of programs designed to reduce vehicle emissions could be greater if participation were subject to a means test.  相似文献   

3.
This paper describes the development of a global positioning system, enhanced data collection tool for the assessment of vehicle exhaust emissions. This involves the collection of activity and travel data on a personal digital assistant with built-in global positioning system receiver. By converting the second-by-second global positioning system based travel data into emissions, estimates are made of the exhausts produced by individual vehicle trips. Differences in travel behaviour and vehicle emissions were examined by gender and trip purpose.  相似文献   

4.
Exclusive high occupancy vehicle lanes, which have become a popular method of addressing the problem of urban traffic congestion, are often justified on the basis of inappropriate measures of effectiveness, and limited analyses. This paper demonstrates a theoretically consistent and defensible approach of high occupancy vehicle lane evaluation based on consumer welfare theory. The potential suitability of this welfare approach is illustrated in the context of a dynamic traffic equilibrium model.  相似文献   

5.
This paper presents the methodology and results from a study to extract empirical microscopic vehicular interactions from a probe vehicle instrumented with sensors to monitor the ambient vehicles as it traverses a 28 mi long freeway corridor. The contributions of this paper are two fold: first, the general method and approach to seek a cost-effective balance between automation and manual data reduction that transcends the specific application. Second, the resulting empirical data set is intended to help advance traffic flow theory in general and car following models in particular. Generally the collection of empirical microscopic vehicle interaction data is either too computationally intensive or labor intensive. Historically automatic data extraction does not provide the precision necessary to advance traffic flow theory, while the labor demands of manual data extraction have limited past efforts to small scales. Key to the present study is striking the right balance between automatic and manual processing. Recognizing that any empirical microscopic data for traffic flow theory has to be manually validated anyway, the present study uses a “pretty good” automated processing algorithm followed by detailed manual cleanup using an efficient user interface to rapidly process the data. The study spans roughly two hours of data collected on a freeway during the afternoon peak of a typical weekday that includes recurring congestion. The corresponding data are being made available to the research community to help advance traffic flow theory in general and car following models in particular.  相似文献   

6.
This paper is the world first to investigate the CO2 impact of railway resurfacing in ballasted track bed maintenance. Railway resurfacing is an important routine maintenance activity that restores track geometry to ensure safety, reliability and utility of the asset. This study consisted of an extensive field data collection from resurfacing machineries (diesel-engine tamping machines, ballast regulators and ballast stabilisers) including travel distances, working distances, fuel consumption and construction methodologies. Fuel consumption was converted to a kg CO2/m using the embodied energies of diesel. Analyses showed that tamping machines emitted the highest CO2 emissions of the resurfacing machineries, followed by ballast regulators and ballast stabilisers respectively. Tamping machines processed 4.25 m of track per litre of diesel, ballast regulators processed 6.51 m of track per litre of diesel and ballast stabilisers processed 10.61 m of track per litre of diesel. The results were then compared to previous studies and a rigorous parametric study was carried out to consider long-term resurfacing CO2 emissions on Australian railway track. The outcome of this study is unprecedented and it enables track engineers and construction managers to critically plan strategic rail maintenance and to develop environmental-friendly policies for track geometry and alignment restoration.  相似文献   

7.
Vehicle soak time, the duration of time a vehicle’s engine is at rest prior to being started, and its distribution function are important transportation activity data inputs for mobile emissions inventory estimation due to their impacts on vehicle start and evaporative emissions. This paper provides vehicle emission researchers with an overview of statistical analysis methods relevant to analyzing vehicle soak time data. Many of these methods are already in use in emissions research and have appeared in the literature. These methods are reviewed and further details regarding the implementation and interpretation of these methods are provided. Statistical methods relevant to the analysis of soak time data that have yet to appear in the emissions literature, including kernel density estimation and generalized linear models, are also introduced. Advantages and disadvantages of the methods are compared and theoretical justification is provided. Issues of correlated observations and censored data are discussed. General guidelines for the analysis of soak time data, such as stratification by start type and geographical region, are established. Finally, a subset of the statistical methods discussed is used to analyze the US Environmental Protection Agency’s 3-city data.  相似文献   

8.
The French government has implemented a periodical vehicle inspection program, which aims at maintaining proper functioning of the vehicle and ensuring the emissions control systems installed on the vehicle work properly. Also, an incentive program for scrapping old vehicles was introduced in 1994 through 1996 to promote the replacement of those vehicles with higher emissions by newer vehicles with lower emissions. A hazard-based duration model of household vehicle transaction behavior has been developed in this study to examine the effects of the inspection program and the grant for scrappage on vehicle transaction timing. The model is developed as a competing risks model assuming the following three types of competing risks: replacing one of the vehicles in the household fleet, disposing of one vehicle in the fleet, and acquiring one vehicle to add to the fleet. The empirical analysis is carried out using the panel data of French households' vehicle ownership from 1984 to 1998, obtained by the panel survey called Parc-Auto, which has been conducted by a French marketing firm, SOFRES, since 1976. The long panel observation period facilitates the introduction of macro-economic indicators into the model, enabling the analysis to distinguish the effects of policy measures from macro-economic factors. The empirical results indicate that the expected vehicle holding duration becomes 1.3 years longer under the inspection program than before the program commenced, given that the vehicle is replaced by another vehicle at the end of the holding duration; and that the conditional probability of replacing a vehicle aged 10 years and over becomes 1.2 times higher, and the average holding duration becomes shorter by 3.3 years, when the grant for scrappage is available.  相似文献   

9.
Real-world vehicle operating mode data (2.5 million 1 Hz records), collected by instrumenting the vehicles of 82 volunteer drivers with OBD datalogger and GPS while they drove their routine travel routes, were analyzed to quantify vehicle emissions estimate errors due to road grade and driving style in rural, hilly Vermont. Data were collected in winter and summer for MY 1996 and newer passenger cars and trucks only. EPA MOVES2010b was used to estimate running exhaust emissions associated with measured vehicle activity. Changes in vehicle specific power (VSP) and MOVES operating mode (OpMode) due to proper accounting for real-world road grade indicated emission rate errors between 10% and 48%, depending on pollutant, chiefly because grade-related changes in VSP could shift activity by as many as six OpModes, depending on road type. The correct MOVES OpMode assignment was made only 33–55% of the time when road grade was not included in the VSP calculation. Driving style of individual drivers was difficult to assess due to unknown traffic operations data, but the largest differences between individual drivers were observed on rural restricted roads, where traffic conditions and control have minimal impact. The results suggest the importance of (1) measuring and incorporating real-world road grade in order to correctly assign MOVES emission rates; and (2) developing a driving style typology to account for differences in the MOVES emissions estimates due to driver variability.  相似文献   

10.
This paper models traffic congestion formation on highways and roads by recognizing the centrality of dynamical systems and using concepts from complexity theory as imbedded in the spin glasses analogue. Further, it explores the concept of how an increase in air pollution caused by vehicle exhaust emission can be traced to traffic congestion, specifically to the acceleration/deceleration of vehicles on the roads. First, spin glass is introduced and then by applying the two-dimensional xy Ising model and defining a Hamiltonian (based on Edwards-Anderson and Mattis models of spin glass systems) for a system of vehicles on the road, derivations are made of the specific friction of congestion and the bulk modulus of congestion using the Gibbs-Boltzmann statistic. Similarly using the interactions of vehicles with each other and the resulting accelerations and decelerations of vehicles as the basis for exhaust emissions, derivations are made of a specificity of exhaust emissions. These are analogues to the entropy models of thermodynamics. This series of derivations serves as an analytical model for detecting incidents of congestion and increase in air pollution due to exhaust emissions in transportation systems.  相似文献   

11.
The paper describes exhaust emission tests performed on a PHEV (Plug-in Hybrid Electric Vehicle) and a BEV (Battery Electric Vehicle), in which the combustion engine was used as a range extender. The measurements of the exhaust emissions were performed for CO2/fuel consumption, CO, THC and NOx. The RDE measurements were performed including the engine operating parameters and emissions analysis. This analysis shows that the engines of BEVs and PHEVs operate in a different parameter range when under actual operating conditions, which directly translates into the exhaust emission values. This is particularly the case for the emission of NOx. The investigations were carried out for two routes differentiated by the length and share of the urban and extra-urban cycles. For both routes, the emission of THC and CO were lower for the PHEV engine – HC by 69% (22 mg/km, route 1) and 6% (15 mg/km, route 2), CO by 69% (0.12 mg/km, route 1) and 80% (0.1 mg/km, route 2). For route 1, characterized by a greater share of the urban cycle, the emission of NOx was lower by 70% (2 mg/km) for the BEV engine, and (route 2) lower by 60% (8 mg/km) for the PHEV engine. Additionally, the curves of the exhaust emissions in time for individual exhaust components have been presented that indicate that in the motorway cycle the emission of THC and CO from the BEV vehicle increases significantly up to ten times compared to urban cycle.  相似文献   

12.
Dynamic traffic assignment models have been attracting increasing attention with the progress of traffic management policies based on information technology. These dynamic estimation tools, however, just apply static route choice models either at only origin node or at every arrival node. This paper aims at providing some knowledge on drivers' dynamic route choice behavior using probe‐vehicle data. The results of analyses show that route choice behavior relates to the distance from driver's position to the destination and that dynamic route choice behavior is modeled better by considering decision process during the trip.  相似文献   

13.
14.
Dispersion models are useful tools for setting emission control priorities and developing strategies for reducing air toxics emissions. Previous methodologies for modeling hazardous air pollutant emissions for onroad mobile sources are based on using spatial surrogates to allocate county level emissions to grid cells. A disadvantage of this process is that it spreads onroad emissions throughout a grid cell instead of along actual road locations. High local concentrations may be underestimated near major roadways, which are often clustered in urban centers. Here, we describe a methodology which utilizes a Geographic Information System to allocate benzene emissions to major road segments in an urban area and model the segments as elongated area sources. The Industrial Source Complex Short Term dispersion model is run using both gridded and link-based emissions to evaluate the effect of improved spatial allocation of emissions on ambient modeled benzene concentrations. Allocating onroad mobile emissions to road segments improves the agreement between modeled concentrations when compared with monitor observations, and also results in higher estimated concentrations in the urban center.  相似文献   

15.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

16.
Carpooling has been considered a solution for alleviating traffic congestion and reducing air pollution in cities. However, the quantification of the benefits of large-scale carpooling in urban areas remains a challenge due to insufficient travel trajectory data. In this study, a trajectory reconstruction method is proposed to capture vehicle trajectories based on citywide license plate recognition (LPR) data. Then, the prospects of large-scale carpooling in an urban area under two scenarios, namely, all vehicle travel demands under real-time carpooling condition and commuter vehicle travel demands under long-term carpooling condition, are evaluated by solving an integer programming model based on an updated longest common subsequence (LCS) algorithm. A maximum weight non-bipartite matching algorithm is introduced to find the optimal solution for the proposed model. Finally, road network trip volume reduction and travel speed improvement are estimated to measure the traffic benefits attributed to carpooling. This study is applied to a dataset that contains millions of LPR data recorded in Langfang, China for 1 week. Results demonstrate that under the real-time carpooling condition, the total trip volumes for different carpooling comfort levels decrease by 32–49%, and the peak-hour travel speeds on most road segments increase by 5–40%. The long-term carpooling relationship among commuter vehicles can reduce commuter trips by an average of 30% and 24% in the morning and evening peak hours, respectively, during workdays. This study shows the application potential and promotes the development of this vehicle travel mode.  相似文献   

17.
Tolls have increasingly become a common mechanism to fund road projects in recent decades. Therefore, improving knowledge of demand behavior constitutes a key aspect for stakeholders dealing with the management of toll roads. However, the literature concerning demand elasticity estimates for interurban toll roads is still limited due to their relatively scarce number in the international context. Furthermore, existing research has left some aspects to be investigated, among others, the choice of GDP as the most common socioeconomic variable to explain traffic growth over time. This paper intends to determine the variables that better explain the evolution of light vehicle demand in toll roads throughout the years. To that end, we establish a dynamic panel data methodology aimed at identifying the key socioeconomic variables explaining changes in light vehicle demand over time. The results show that, despite some usefulness, GDP does not constitute the most appropriate explanatory variable, while other parameters such as employment or GDP per capita lead to more stable and consistent results. The methodology is applied to Spanish toll roads for the 1990–2011 period, which constitutes a very interesting case on variations in toll road use, as road demand has experienced a significant decrease since the beginning of the economic crisis in 2008.  相似文献   

18.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

19.
In this paper, a decision support approach is proposed for condition-based maintenance of rails relying on expert-based systems. The methodology takes into account both the actual conditions of the rails (using axle box acceleration measurements and rail video images) and the prior knowledge of the railway track. The approach provides an integrated estimation of the rail health conditions to support the maintenance decisions for a given time period. An expert-based system is defined to analyse interdependency between the prior knowledge of the track (defined by influential factors) and the surface defect measurements over the rail. When the rail health conditions is computed, the different track segments are prioritized, in order to facilitate grinding planning of those segments of rail that are prone to critical conditions. In this paper, real-life rail conditions measurements from the track Amersfoort-Weert in the Dutch railway network are used to show the benefits of the proposed methodology. The results support infrastructure managers to analyse the problems in their rail infrastructure and to efficiently perform a condition-based maintenance decision making.  相似文献   

20.
Capacity, demand, and vehicle based emissions reduction strategies are compared for several pollutants employing aggregate US congestion and vehicle fleet condition data. We find that congestion mitigation does not inevitably lead to reduced emissions; the net effect of mitigation depends on the balance of induced travel demand and increased vehicle efficiency that in turn depend on the pollutant, congestion level, and fleet composition. In the long run, capacity-based congestion improvements within certain speed intervals can reasonably be expected to increase emissions of CO2e, CO, and NOx through increased vehicle travel volume. Better opportunities for emissions reductions exist for HC and PM2.5 emissions, and on more heavily congested arterials. Advanced-efficiency vehicles with emissions rates that are less sensitive to congestion than conventional vehicles generate less emissions co-benefits from congestion mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号