首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 531 毫秒
1.
准确地对机动车排放污染进行量化评估是机动车排放控制策略制定的前提. 为提高模型计算精度,提出低速行驶比例的概念,用于描述车辆在路段上行驶时瞬时速度的分布特征. 在传统的VSP分布排放模型的基础上,纳入更多的中观影响因素,包括路段平均速度、路段长度、道路等级和低速行驶比例,采用多元回归方法构建一种新型的中观排放模型. 经比对,所建排放模型相对于传统VSP分布排放模型精度更高. 所建模型考虑的新增影响因素均较易获得,故可应用于城市大规模交通路网的排放计算,对提高城市路网排放计算精度,辅助机动车排放控制策略制定具有一定意义.  相似文献   

2.
由于混合动力汽车与传统燃油车的能耗排放因子具有差异性,导致机动车交通路网能耗排放的量化评估存在不确定性。本文建立混合动力汽车在实际交通状态中的能耗和CO2排放因子测算模型,基于车辆比功率VSP(Vehicle Specific Power)作为车辆行驶状态与能耗排放之间耦合关系的表征参数。通过引入内燃机转速区分内燃机开启和关闭工作状态,并计算内燃机开启状态下VSP对应的平均能耗率,同时,建立能够解析混合动力汽车能耗排放产生机理的VSP分布。通过收集典型行驶工况下车辆测试油耗数据和北京市车辆实际行驶轨迹数据,验证了模型的准确性,并应用模型测算混合动力汽车不同速度区间下的油耗和CO2排放因子。研究结果表明:在城市行驶工况(UDDS)和高速行驶工况(HWY)中,模型测算能耗排放因子与真实值的平均相对误差分别为3.7%和-1.7%,与不考虑内燃机开启状态相比,测算误差减少5.6%和4.3%;在实际交通状态下,采用传统燃油车的测算方法会导致混合动力汽车行驶平均速度为高速区间时油耗和CO2排放量被低估,当行驶平均速度为低速区间时油耗和CO2排放量会被高估。  相似文献   

3.
为了寻求更加精确的道路车辆排放模型的建立方法,对道路车辆排放关键因素受路段参数的影响进行探索。通过实验方法测算机动车排放因子,并获取路段平均速度、路段平均加速度、路段平均VSP三个动态特征参数,路段长度和道路等级两个路段静态特征参数,通过回归分析的方法量化不同因素与机动车排放因子的关联关系。结果表明:道路特征参数对机动车各类污染物的排放因子均有一定程度的影响,但单一因素对道路排放因子的影响程度有限。  相似文献   

4.
在交通油耗和排放模型的研究中,利用机动车比功率(VSP)分布刻画交通状态成为了最新研究需求. 然而,现有交通工程还缺乏对常见交通参数与VSP间关系的认识,更缺乏利用交通参数求解VSP分布的模型. 为了研究交通状态对VSP分布的影响,本文利用大量城市快速路上的浮动车数据,建立了其不同行程速度下对应的VSP分布. 经分析,发现了VSP分布与平均行程速度之间的规律性特征:当平均行程速度大于20 km/h时,VSP分布近似于正态分布;分布均值为以该速度匀速行驶时的VSP值;分布标准差可表达为平均行程速度的幂函数. 基于以上发现,提出了利用平均行程速度的VSP分布数学模型,并利用该模型进行机动车油耗测算. 通过与实测油耗的对比分析,VSP分布模型可以有效用于机动车油耗测算. 本研究指出了利用数学模型描述不同交通状态下VSP分布的可能性,该模型可有效地与交通数据或模型结合,实现油耗和排放的实时量化评价.  相似文献   

5.
传统安全分析模型在微观层面建立,将路网中相邻的交叉口和路段分解为两类独立的研究单元分别进行研究.密集路网中城市主干路交叉口间距小,相邻的路段与交叉口交通运行相互影响,难以划分路段与交叉口.交叉口间距和道路两侧路网形态是影响主干路安全的重要因素.传统模型分别针对路段和交叉口事故进行研究,无法分析这两个因素对主干路的整体安全影响.基于上海市21条城市主干路,将相邻路段和交叉口依据道路横断面和交通运行特征组合为118个中观单元,并计算了中观单元两侧道路的路网形态.考虑到来自同一主干路的中观单元几何设计和交通特征互相关联,建立随机效应负二项模型.分析了交叉口间距和路网形态对主干路的安全影响,结果表明:相较于不规则方格路网和混合型路网,位于方格路网中的主干路事故数较少;交叉口间距越长,主干路事故越少.中观分析方法克服了传统安全分析模型中研究单元划分及影响因素分析的问题,为城市主干路设计及路网规划提供了建议.  相似文献   

6.
利用车载尾气检测系统(PEMS)进行北京市交通路网中重型柴油车实时油耗、排放和行驶数据收集,并从微观、中观和宏观三个层次对动态交通网络中的油耗和排放规律及其影响因素进行深入分析. 行驶特征分析表明:重型柴油车在低、中速状态下行驶时间最长;在中速状态下行驶里程最长;同时匀速工况下的行驶时间和里程所占比例最高. 油耗和排放分析表明:重型柴油车(国III)平均油耗水平为18.6L/100km,NOx和PM污染水平分别为4.63g/km和0.087g/km. 其中在微观层次,高速和高加速是引起车辆瞬时高油耗和排放的主要原因;在中观层次,怠速和低速行驶是造成单位距离高油耗和排放的主要原因;在宏观层次,行驶里程是总油耗和排放评估的一个重要影响参数.  相似文献   

7.
城市交通排放高分辨率分析方法研究 ——北京实证   总被引:1,自引:0,他引:1  
交通污染减排政策呈现多样化、精细化和差别化发展趋势,传统交通排放模型在评价范围、评价尺度上的分辨率存在局限性.本文基于实时监测数据的交通流仿真模型、视频检测方法的车队结构分析和本地化工况的速度排放因子修正关系,提出了城市交通排放高分辨率分析方法,时空分辨率达到小时和路段级别,排放源可区分不同交通方式和本地外地.并以北京市机动车 NOx排放为例,对路网交通排放时空分布特征进行实证分析.北京市高峰时段路网交通排放量占全天排放的31.2%;高速路、快速路排放分别占路网排放总量的37.9%和38.8%;五环~六环间排放量占六环内排放总量的38.32%;货运车辆排放占路网排放比例达到47%.本文提出的城市交通排放高分辨率分析方法对精准定位交通污染治理时间、空间和对象,提升精细化决策水平具有一定意义.  相似文献   

8.
为提高城市重型环卫货车的NOx排放测算精度,本文提出一个基于工况分布的重型环卫货车NOx排放模型.首先,根据基于实测逐秒速度数据分析的环卫重型货车工况特征和 NOx排放特性对不同负载货车的 VSP区间进行划分;其次,结合货车瞬时速度建立不同负载的环卫重型货车运行模式区间划分方法,并对不同负载货车NOx排放因子进行测算.结果显示,空载货车在速度区间[0, 20) km/h 上,NOx排放因子大于满载,其他速度区间上相反.与基于 MOVES模型测算结果对比,在不同速度区间上,基于 MOVES的测算结果均比本文提出模型的测算结果偏低,如在低速区间[0,20) km/h,中速区间[20,50) km/h,高速区间[50,+∞) km/h:空载行驶时,分别低24.67%、6.82%和23.81%;满载行驶时,分别低12.38%、18.81%和26.43%.  相似文献   

9.
在交通油耗和排放模型的研究中,利用机动车比功率(VSP)分布刻画交通状态成为了最新研究需求. 然而,现有交通工程还缺乏对常见交通参数与VSP间关系的认识,更缺乏利用交通参数求解VSP分布的模型. 为了研究交通状态对VSP分布的影响,本文利用大量城市快速路上的浮动车数据,建立了其不同行程速度下对应的VSP分布. 经分析,发现了VSP分布与平均行程速度之间的规律性特征:当平均行程速度大于20 km/h时,VSP分布近似于正态分布;分布均值为以该速度匀速行驶时的VSP值;分布标准差可表达为平均行程速度的幂函数. 基于以上发现,提出了利用平均行程速度的VSP分布数学模型,并利用该模型进行机动车油耗测算. 通过与实测油耗的对比分析,VSP分布模型可以有效用于机动车油耗测算. 本研究指出了利用数学模型描述不同交通状态下VSP分布的可能性,该模型可有效地与交通数据或模型结合,实现油耗和排放的实时量化评价.  相似文献   

10.
为提高城市重型环卫货车的NOx排放测算精度,本文提出一个基于工况分布的重型环卫货车NOx排放模型.首先,根据基于实测逐秒速度数据分析的环卫重型货车工况特征和 NOx排放特性对不同负载货车的 VSP区间进行划分;其次,结合货车瞬时速度建立不同负载的环卫重型货车运行模式区间划分方法,并对不同负载货车NOx排放因子进行测算.结果显示,空载货车在速度区间[0, 20) km/h 上,NOx排放因子大于满载,其他速度区间上相反.与基于 MOVES模型测算结果对比,在不同速度区间上,基于 MOVES的测算结果均比本文提出模型的测算结果偏低,如在低速区间[0,20) km/h,中速区间[20,50) km/h,高速区间[50,+∞) km/h:空载行驶时,分别低24.67%、6.82%和23.81%;满载行驶时,分别低12.38%、18.81%和26.43%.  相似文献   

11.
速度排放修正因子(Speed Correction Factors,SCF)是评估速度变化对车辆排放影响的重要参数.然而,传统的SCF建立方法耗时长、成本较高,且获取的SCF分辨率较低.为了得到高分辨率的SCF,基于北京市大量的实测工况数据和排放率数据,提出了北京市轻型车SCF的建立方法.首先,对采集的工况数据进行60 s短行程划分及2 km/h行程速度的聚类;在此基础上,建立不同道路类型和速度区间下的比功率分布(Vehicle Specific Power,VSP);然后,结合排放率和建立的VSP分布,建立不同道路类型、排放标准的各污染物的SCF.经过分析,得出相比传统的SCF建立方法,本文提出的方法更能反映车辆的实际行驶特征、且获得的SCF的速度分辨率更高.  相似文献   

12.
交通温室气体排放和空气污染越来越受到国内各城市的广泛关注.控制温室 气体排放和污染物排放的关键是找到排放的源头并进行科学量化,从而制定有针对性的 政策措施.鉴于我国目前还没有发布全国性的交通排放评估方法,本文基于欧洲道路排放 因子模型并结合北京实际的道路交通运行工况和车辆结构数据,采用自下而上的建模方 法,利用车型分类、交通状态、工况单元和活动水平进行模型的数据划分,使用平均速度 (V)、行驶过程中停车时间比例(SP)和相对正加速度(RPA)三个特征值作为描述工况单 元的统计特征参数,借用计算机仿真构建了本地化的交通排放因子库,并在此基础上开 发了基于交通活动水平的交通排放测算模型.该模型不仅能够建立北京市的交通能源消 耗、温室气体排放和污染物排清单,而且能够与宏观交通模型无缝衔接,评估不同的交通 政策对交通减排的潜在影响.  相似文献   

13.
交通管理与控制对城市隧道机动车尾气排放的影响   总被引:2,自引:0,他引:2  
选取城市中受污染较为严重的隧道为研究对象,在对交通量、道路特征等方面进行详细调查的基础上,联合微观交通仿真和机动车尾气排放模型,提出了交通尾气污染仿真计算方法,分析了不同交通管理控制手段对隧道内机动车尾气污染物排放的影响。以南京九华山隧道为例,基于VISSIM软件和CMEM模型构建了相应的仿真平台,模拟车速限制、车型限制、单双号限行等管理措施对尾气排放的影响。研究表明:该方法能够较好的模拟城市隧道中机动车的运行及尾气的排放。  相似文献   

14.
With the growing of vehicles ownership, the vehicular exhaust emissions have become major sources of air pollution in cities. In this paper, the pollutants, carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) are considered as evaluation factors. On the basis of the relation between the emission factors and vehicle's velocity and the relation amongst three parameters (Volume, Speed, and Density) of traffic flow, we have designed a model. This calculates the total quantity of pollutants emission from vehicles based on speed, proportion of vehicle types, and traffic volume. Using the theory of nonlinear programming, we have formed an optimal model in which the link capacity is one main constraint and the minimum of the total quantity of pollutants emission is the goal and designed its algorithm solution. The aim of our research is to find a method to control the quantity of traffic pollutants emission through adjusting and controlling the composition of vehicle types, and then the traffic volume and vehicle's running speed indirectly. Finally, the feasibility of the model is justified through a practical example.  相似文献   

15.
利用车载尾气排放检测系统(PEMS)对捷达轻型车在高速公路人工收费(MTC)和电子收费(ETC)两种方式下的大量尾气排放数据进行了收集和比较。分析结果表明ETC能降低所有污染物的排放,但NOx的降幅却远低于HC和CO的降幅。应用车辆比功率(VSP)模型方法进行了深入的排放预测研究,研究发现[-2, 2]是收费站尾气排放预测的重要VSP区间。对[-2, 2]进行VSP区间细分后,排放预测的准确度得到了提高。对车辆速度、VSP、NOx累积排放的全面分析解释了NOx降幅低于其他污染物的原因。最后对利用排队长度的排放预测模型进行了研究,发现该模型不适用于MTC方式下的NOx排放预测。  相似文献   

16.
高分辨率的排放因子是进行交通能耗排放测算的重要参数,然而,由于数据采集与质量控 制问题,排放因子速度修正曲线常存在异常波动。为提高排放因子速度修正结果的准确性,本文 分别从比功率分布和排放率两个角度分析排放因子敏感性和区间容许误差,建立机动车工况数 据和PEMS排放数据需求量计算模型。敏感性分析结果表明,个别比功率区间分布误差是造成 排放因子速度修正曲线产生异常波动的重要原因;排放率误差会导致排放因子速度修正结果出 现整体性误差。数值模拟计算结果表明,在95%的置信水平下,平均速度在20~120 km·h-1内,控 制快速路CO2排放因子速度修正误差不超过1%:需采集40 min的排放数据,细化至1 kW·t-1 粒度 下各比功率区间数据需求量差异显著;各平均速度下需采集710 min工况数据,相同误差下,80~ 120 km·h-1 内工况数据需求量更低;为进一步消除曲线的异常波动,需大量增加平均速度为64~ 80 km·h-1 范围内的工况数据量。本文的研究结果对工况和排放数据的采集工作有实际指导意 义,可有效克服曲线异常波动问题,提高排放因子结果可靠性,为节能减排工作提供支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号