首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了高速列车多体动力学仿真模型和车轮踏面磨耗计算模型, 通过动力学模拟计算了轮轨接触关系和接触力, 用FASTSIM重新计算轮轨接触斑内的滑动速度、轮轨切向力和摩擦功率的分布, 采用基于摩擦功的轮轨磨耗模型计算了车轮滚过一圈时踏面上一个接触斑的磨耗质量, 再通过累积得到运行一定距离后的踏面磨耗深度。采用数值仿真方法研究了不同车轮踏面外形、轮对内侧距、轨底坡和车速对踏面磨耗深度和磨耗分布的影响。计算结果表明: LMA和S1002踏面的磨耗分布比较均匀, LM踏面的磨耗深度最大, LM和XP55踏面的磨耗区域更靠近轮缘; 在LMA踏面标准轮轨匹配参数下, 轮对内侧距增加会增加磨耗, 磨耗深度随着轨底坡减小而增大; 高速列车车轮踏面磨耗与等效锥度密切相关, 较小的等效锥度会减小磨耗, 但等效锥度的选择需要兼顾动力学性能的其他方面。  相似文献   

2.
轮轨磨耗伤损机理分析   总被引:1,自引:0,他引:1  
运用轮轨相互作用原理,研究轮轨磨耗伤损的机理。  相似文献   

3.
以CRH6A城际动车组为研究对象,基于实测磨耗后轮轨型面,利用多体动力学软件Universal Mechanism建立了车辆动力学模型,计算了通过曲线时的轮轨力与轮对位置参数;在非线性有限元软件ABAQUS中,基于任意拉格朗日欧拉方法建立了轮轨三维滚动接触模型,计算了轮轨接触应力特性和滑移特性;基于Archard磨损模型,提出一种车轮表面接触区域磨损速率快速计算方法,研究了新轮、磨耗初期车轮和磨耗到限车轮与新轨、磨耗后钢轨相互作用下,车轮通过曲线时接触区域磨损特性。研究结果表明:新轮和磨耗后钢轨、磨耗初期车轮和新轨、磨耗到限车轮与新轨相互作用下最大法向接触应力分别达到了2 017、1 803和1 668 MPa,比新轮和新轨、磨耗初期车轮和磨耗后钢轨、磨耗到限车轮和磨耗后钢轨3种作用下最大接触应力高出20%以上;新轮和磨耗后钢轨、磨耗初期车轮与新轨、磨耗初期车轮和磨耗后钢轨相互作用下,轮轨间出现两点接触、三点接触,甚至四点接触;在多点接触下,轮缘处接触点表现出应力集中且磨损速率较高的特点,最大磨损速率分别达到2.60×10-5、3.82×10-5、3.52×10-5 mm·s-1,远高于新轮和新轨、磨耗到限车轮和新轨、磨耗到限车轮和旧轨3种作用下的磨损速率;磨耗到限车轮和新轨与磨耗钢轨相互作用下的磨损速率均相对较小,说明在磨耗后期的车轮磨耗相对较小;轨角磨耗会严重加剧新轮的轮缘磨耗,且磨耗初期车轮具有较高的轮缘磨损速率,应将车轮镟修周期和钢轨打磨周期相协调,并通过涂油等方式降低磨耗初期的轮缘磨损。  相似文献   

4.
重载铁路轮轨磨耗及其对安全运行的影响   总被引:1,自引:0,他引:1  
  相似文献   

5.
为实现高速列车黏着控制中对期望蠕滑速度的精确跟踪,提出了一种新的蠕滑速度跟踪控制方法.首先考虑牵引/制动动态建立了列车黏着控制系统动力学模型,并将其描述为一个串级非线性系统;然后采用动态面控制方法,并引入自适应技术估计列车模型参数和系统集总不确定性上界,设计了基于自适应动态面的高速列车蠕滑速度跟踪控制策略.所设计的控制...  相似文献   

6.
轮对摇头运动对轮轨滚动接触蠕滑率/力的影响   总被引:3,自引:0,他引:3  
用数值分析方法分析了单轮对的摇头运动对其左右轮轨滚动接触斑上蠕滑率/力的影响。在轮轨滚动接触蠕滑率/力关系分析方面,利用了Kalker的三维弹性体非赫兹滚动接触计算模型。通过分析计算可知,轮对摇头角运动参量是影响轮轮之间横向蠕滑力的主要因素。  相似文献   

7.
轮轨滚滑磨损试验研究   总被引:2,自引:0,他引:2  
在自行研制的DLG1/15型轮轨模拟试验机上,在不同车轮硬度、不同冲角,不同速度等试验条件下,研究了轮轨滚滑运行条件下的磨损率变化规律,结果表明,车轮表面硬度提高,其磨损率明显减小,而对钢轨磨损则几乎没有影响,这为机车轮缘局部淬火延寿技术研究提高了理论依据,冲角加大,车轮的磨损明显加剧;车轮转速较大时,按运行时间计其磨损率也较大,但若按运行行程计,车轮磨损率就较小。  相似文献   

8.
9.
为预测高速铁路钢轨的磨耗量,建立了轨道结构静力学有限元模型和动力分析模型,基于Archard磨耗理论从曲线半径、行车速度、轮轨横移量3个角度计算分析了钢轨磨耗量,利用垂直磨耗深度0.5mm的磨耗量为界反算出通过总质量.计算结果表明:曲线地段钢轨磨耗较为严重,垂直磨耗深度为0.5mm时,直线上通过的总质量为45.9~60.0 Mt,曲线上通过仅为22.9~29.9Mr;相同曲线半径条件下,单轮作用下的接触斑处钢轨磨耗量随着行车速度提高而增大;相同速度和曲线半径下,钢轨磨耗量随着轮轨横移量增大而增大.  相似文献   

10.
在高铁运用与理论实践基础上,提出了抗蛇行频谱特征匹配原则,并作为超高速转向架技术方案研究的基本指导准则之一.根据基于抗蛇行频带吸能机制的稳定新理论,以ICE3系列作为基准转向架,通过必要的参数优配,制订了超高速转向架优配方案.动态仿真分析表明:400 km/h超高速运用存在3大技术难题:即抗蛇行减振器性能可靠性、车体横向振动响应频带增宽和电机横摆自激振动.尽管这3大技术难题在技术与理论上可以得到解决,但是超高速运用已经丧失了其商业价值.冲击600 km/h打破法国574.8 km/h世界纪录,不仅具有十分重要的现实意义,而且也具备技术可行性.但是时速500 km/h以上,将出现车轮纵向蠕滑不稳定问题.根据威金斯理论,这是高速轮轨速度极限的重要技术标志之一.  相似文献   

11.
采用独立轮轮对可以有效地降低车辆地板高度,目前在轻轨车辆系统中得到了重视与应用,但在通过半径很小的曲线时较大的轮轮磨耗又严重地影响了车轮和钢轨的使用寿命。通过模拟计算,本文提出了减轻独立轮对系统磨耗的几种方法,即适当的最小曲线半径、曲线通过速度、轨道润滑和车辆导向轮结构可以有效地降低独立轮对系统轮轮磨耗程度。  相似文献   

12.
高速列车轮轨动态相互作用特征   总被引:3,自引:0,他引:3  
为了探明高速铁路轮轨动态相互作用特征, 运用铁道机车车辆-轨道耦合动力学理论, 考虑了轮轨系统参振的影响, 研究了高速运营条件下曲线轨道上的轮轨动态接触几何关系, 分析了安全性指标和舒适性指标的随机振动特性。研究结果表明: 在高速运营条件下, 曲线轨道上的轮轨动态接触几何关系具有明显的特点, 在160~300 km·h-1速度范围内, 减载率及车体振动加速度的敏感波长分别为1.0~2.5 m与40~50 m, 控制该波长范围不平顺对提高动车组的安全性及舒适性十分有利。  相似文献   

13.
为了对具有简谐波形的钢轨短波波磨进行分组与分析轮轨非稳态滚动接触的纵向蠕滑力特性, 引入了波磨深度指数与波长比, 采用Kalker三维滚动接触理论计算了车轮的纵向蠕滑力, 并与采用稳态滚动理论计算结果进行了对比, 使用频率响应的系统辨识法对纵向蠕滑力的波动分量进行了拟合, 在短波波磨等深度指数条件下, 用波长比的二阶传递函数描述了轮轨纵向蠕滑力的波动分量与稳态理论波动分量之间的关系, 使用传递函数, 由稳态纵向蠕滑力的波动分量计算了非稳态纵向蠕滑力的波动分量, 进而计算了非稳态的纵向蠕滑力。计算结果表明: 在小蠕滑条件下, 由Kalker三维滚动接触理论计算出的纵向蠕滑力的波动分量随着波长比的变化产生明显的幅值衰减和相位滞后, 波长比越大, 幅值衰减越大, 相位滞后越多, 而稳态滚动理论的计算结果与波长比无关。由传递函数和Kalker数值理论计算的纵向蠕滑力的时域波形、频域幅值谱和相位谱相同。  相似文献   

14.
在对各种轮轨蠕滑计算模型进行归类的基础上,详细地讨论了Kaller教授提出的USETAB插值表法的结构和应用的可能途径,并对几种典型的方法作了分析比较。结果表明不同模型之间的差异随不同的轮轨接触条件而变化。计算结果可以作为选择轨蠕滑模型的依据。  相似文献   

15.
非赫兹接触轮轨蠕滑力数表TPLR的研究   总被引:4,自引:1,他引:4  
本文介绍了直线轨道上单轮对运动状态蠕滑率和蠕滑力关系律数表的编制方法。数表中轮轨蠕滑率/力计算模型是非赫兹型的。  相似文献   

16.
高速列车轮轨噪声分析与控制   总被引:1,自引:0,他引:1  
对高速列车轮轨噪声产生机理进行了理论分析,论证了钢轨振动产生的辐射噪声是轮轨噪声的主要成分;通过对模拟运行的高速列车轮轨噪声源的测试与分析,表明列车运行速度是影响轮轨噪声大小的主要因素之一,由此提出高速列车轮轨噪声控制的有效方法。  相似文献   

17.
将多重网格法引入水介质存在时高速轮轨黏着问题的数值求解中, 研究了轮轨间存在水介质和不考虑轮轨表面粗糙度时, 速度与载荷对水膜厚度的影响。数值分析结果表明: 水膜厚度与轮轨表面粗糙度处于同一等级, 粗糙度的影响不可忽略。基于数值分析结果, 应用部分膜润滑理论研究了考虑表面粗糙度与轮轨间存在水介质时的接触机理, 分析了轮轨黏着系数随速度变化的情况。计算结果表明: 随着速度的提高, 黏着系数急剧降低, 其数值低于0.1。JD-1试验速度在60、90、120km·h-1时, 黏着系数的试验结果与数值结果吻合较好, 最大相对误差不超过8%, 因此, 利用数值方法可较好地预估黏着系数。  相似文献   

18.
列车速度是影响轮轨噪声大小的主要因素之一,由于轮轨噪声对车速的依赖性,其声级将随着列车不断的高速化会愈来愈大。目前已有许多文献以轮轨噪声进行研究并提出了一些措施,轮轨噪声有所降低,但仍然是列车的主要噪声源。本文通过轮轨噪声的理论分析和实验数据分析。查明轮轨噪声主要来源于钢轨振动产生的辐射噪声,因此,设法减小钢轨的振动是降低轮轨噪声的最有效途径。  相似文献   

19.
为研究尖轨变截面对曲尖轨轮轨接触行为和磨耗分布的影响,提出了一种适用于道岔区的三维非对称接触几何算法,该算法可计算车轮与曲尖轨间的真实法向间隙.使用SIMPACK建立车辆-道岔多体动力学模型,获得仿真结果;利用考虑变截面的接触模型与英国谢菲尔大学提出的USFD磨耗模型计算曲尖轨磨耗.研究结果表明:1)以S1002CN车轮与12号道岔曲尖轨为例,轮对摇头角与尖轨变截面均会引起轮轨法向间隙沿接触斑纵向非对称分布,从而导致接触斑形状与应力沿接触斑纵向非对称分布;当摇头角为10 mrad,横移量为7.5 mm时,本文算法得到的接触斑面积比未考虑尖轨变截面和摇头角的简化算法所得结果大9.2%. 2)以CRH3型车与12号曲尖轨道岔为研究对象,简化算法得到的最大磨耗深度为本文算法所得结果的0.75倍.  相似文献   

20.
高速动车组车轮踏面磨耗特征分析   总被引:3,自引:2,他引:1       下载免费PDF全文
为研究不同类型高速动车组车辆车轮踏面磨耗特征,探寻车轮发生磨耗后车辆运行性能的演变,以运行在武广客专上的CRH380A和CRH380B型动车组为研究对象,在线路数据统计的基础上,基于SIMPACK建立的高速动车组模型和编制的轮轨磨耗程序,对两类动车组车辆在一个镟修周期内的车轮磨耗特性及其对车辆运行性能的影响进行分析. 结果表明,该线路上运营的动车组车辆车轮磨耗特征主要表现为踏面凹槽磨耗,且CRH380A型动车组车轮踏面磨耗程度更为严重;在一个镟修周期内,由于车辆设计理念的差异,CRH380A型动车组车轮磨耗特征表现为磨耗范围较窄但磨耗深度较大,凹槽磨耗较为明显,而CRH380B型动车组则表现为磨耗范围较宽但磨耗深度较小,磨耗较为均匀;在运行2.5 × 105 km里程内,新轮状态下的CRH380A型动车组运行稳定性明显优于CRH380B型动车组,但在运营里程超过1.0 × 105 km后,由于受到车轮磨耗的影响,运行稳定性较CRH380B型动车组恶劣;同时,CRH380A型动车组车体最大振动加速度和平稳性指标分别为0.52 m/s2和2.26,均优于CRH380B型动车组的0.58 m/s2和2.38,但CRH380A型动车组脱轨系数和轮重减载率均为0.35,均大于CRH380B型动车组的0.14和0.28. 因此,在整个运行周期内,CRH380A型动车组车辆运行平稳性优于CRH380B型动车组,但运行安全性较CRH380B型动车组恶劣.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号