首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
为预测盾构双隧道施工周围土体的变形及衬砌结构管片应力规律,以石家庄地铁1号线07标段北宋—谈固站区间双线隧道为工程背景,在考虑各土层材料性质及盾构施工工艺的基础上,利用FLAC3D建立了盾构双隧道的三维精细数值模型,研究了盾构双隧道衬砌管片的应力规律,并与现场实际监测数据进行了对比分析.结果表明:盾构隧道开挖造成的地层沉降大致沿隧道轴线与水平线夹角45°向地表扩散.横向地表沉降的影响距离距隧道中心约为30m.随着隧道埋深增加,对应地表监测点位累计沉降值变小,与隧道埋深成反比对应关系.隧道附近土体的第一主应力存在应力集中现象,应力集中系数约为1.3.衬砌管片应力分布存在差异性,靠近双隧道共同扰动的管片侧的拉应力和剪切应力集中现象较为明显.衬砌管片横断面形变以"椭圆化"变形为主,兼有断面收缩变形.  相似文献   

2.
3.
以无锡地铁某盾构隧道区间穿越既有铁路隧道为工程实例,基于Ansys数值软件建立3维力学模型,从盾构隧道施工过程中的盾构推力、注浆压力、施工工况、相邻隧道间距4个方面对盾构隧道施工引起的既有铁路隧道的结构变形和受力规律进行了数值模拟,并分析了既有隧道变形的机理和影响因素。  相似文献   

4.
确保临近既有建筑物安全是新建隧道施工的关键问题之一.针对广州地铁十八号线琶洲西区站—冼村站区间双线盾构隧道下穿既有博物馆建筑的情况,基于合理假定条件,采用数值分析方法模拟计算了新建隧道施工过程中盾构掘进对邻近建筑物桩基的影响.数值分析结果表明:随着盾构掘进,桩顶竖向位移的变化表现为先缓后急再缓,当桩基正下方的管片进行拼...  相似文献   

5.
盾构隧道施工对西安钟楼影响的数值模拟预测   总被引:1,自引:0,他引:1  
隧道施工导致古建筑及周围地表沉降的预测和控制是国内隧道工程领域遇到的研究课题之一.建立的三维有限元模型模拟了西安地铁2号线钟楼段的盾构施工过程,模拟了无隔离桩、无接触隔离桩及有接触隔离桩3种情况下盾构掘进过程中地面点沉降、钟楼周围地表和钟楼台四角点沉降的动态变化规律.结果表明,盾构施工有限元模型可以很好的模拟盾构通过的各个阶段,计算结果与盾构掘进规律一致;有接触隔离桩模型较好地反映了隔离桩的实际工程作用,有效的隔断了桩内外的地表沉降,隔离桩内外地表沉降差达到14.1mm;接触隔离桩减小了盾构施工引起的钟楼四角点的沉隆及差鼻沉降.对钟楼缸到了很好的保护作用.  相似文献   

6.
为研究近接重叠下穿既有隧道的盾构施工对地表和既有隧道的影响,以长沙地铁3号线下穿地铁1号线的盾构隧道工程为依托,采用Midas/GTS NX软件建立三维模型,考虑土仓压力、注浆压力、注浆量和掘进速度影响下,探究新建隧道施工对地表沉降和既有隧道位移的影响。研究结果表明:土仓压力增大会减少地表沉降量,且掌子面前、后各3.5倍隧道洞径区间内完成了90%的竖向变形;增大注浆压力和注浆量均可减少既有隧道的竖向位移,但注浆量对既有隧道竖向变形的控制作用较注浆压力的大,当研究区间的注浆压力和注浆量分别提高了1.5倍、0.6倍时,既有隧道竖向变形分别降低了0.5、0.9 mm;盾构掘进速度增大,地层所受扰动增大,地表最大沉降量和既有隧道最大竖向位移也增大。研究成果可为类似工程施工提供技术指导。  相似文献   

7.
以苏州市吴中区的平行隧道施工为工程依托,利用有限元软件ABAQUS对盾构始发过程进行了仿真模拟,对地表沉降、地层位移、土体应力和围护结构应力进行了对比分析。模拟表明:土体强度对抵抗地层扰动能力具有有效性;土质强度越大,隧道结构在Y轴方向所受的地应力越小,这意味着管片受土压力越小,则隧道结构更为稳定;主动土压力随着盾构掘进深度的增加而增大,且伴随着主动土压力的增加,围护结构应力值也相应增大。  相似文献   

8.
基于某城市地铁2号线穿越工业厂房区引起地基变形的工程背景,简化为实体应变模型,采用数值模拟的方法对开挖前后隧道围岩变形进行对比,目的是研究盾构在开挖过程中对周围岩体的变形影响情况。结果表明,盾构开挖过程中隧道围岩变形比较大,隧道中心处竖向变形情况远大于水平变形,盾构与隧道的接触面处的应力高度集中且远远大于周围岩体的平均应力。  相似文献   

9.
针对深圳地铁7号线某区间盾构隧道下穿既有地铁1号线区间实际工程,采用MidasGTS软件建立了盾构施工的物理力学模型,模拟了盾构隧道穿越既有线施工过程,预测分析了盾构施工对既有盾构区间的影响。计算结果表明,在对隧道间土体进行洞内注浆加固的条件下,盾构区间施工对既有地铁线沉降变形存在一定影响,但影响程度较小,可以满足既有线运营要求。  相似文献   

10.
当开挖基坑位于隧道附近,由于基坑开挖导致影响范围内的土体应力释放,打破了土体原有的应力平衡,致使基坑底部隆起,进而使基坑开挖范围内的土体发生位移,从而带动周围隧道产生移动。以武汉地铁7号线北延工程天阳路站至腾龙大道站区间风井基坑为例,采用三维有限元数值模拟的方法,模拟了基坑开挖引起的盾构隧道变形和内力的变化,分析得出了采取分段分区施工方案能够明显改善基坑开挖引起的盾构管片的水平、竖向位移以及内力变化,结合现场实际穿越过程中的监测数据,与数值模拟结果基本一致,说明施工方案合理可行。  相似文献   

11.
地铁盾构隧道施工对邻近管线的影响分析   总被引:1,自引:0,他引:1  
为了获得地铁隧道盾构法施工对临近地下管线的变形和应力的影响规律,以大连地铁二号线某区间隧道工程为背景,利用FLAC3D软件对隧道盾构施工引发的地层变形所导致的管线变形、应力进行了精细模拟,得到双线隧道施工完成后横向地表沉降槽不符合叠加理论,存在少量差值,双线隧道贯通时最大沉降值为11.26 mm,盾构隧道地层体积损失率为1.46%,地表沉降槽宽度系数为0.81.按两条隧道互不影响沉降叠加,最大沉降值为11.93 mm;右线隧道贯通时,燃气管最大沉降值为10.1 mm,左线隧道贯通时,燃气管最大沉降值为11.4 mm,最大沉降位置向左有少量偏移.随着右线盾构掘进施工,污水管道沉降逐渐增大,最大沉降变形为5.45 mm,线隧道贯通后,污水管线最大沉降值为9.79 mm.整个过程两管均处于安全状态.  相似文献   

12.
以郑州市轨道交通5号线某区间盾构隧道开挖工程为例,采用FLAC3D数值模拟软件进行建模分析,将数值模拟软件得出的隧道开挖引起的地表沉降值与实际测量的数值进行对比,得到以下结论:隧道拱顶处沉降最大,拱底处隆起最大;研究断面的横向沉降均呈W形分布;断面一地表最大横向沉降值为14.6mm,对应的数值模拟得到的最大横向沉降值为14.2mm;断面二地表最大横向沉降值为7.6mm,对应数值模拟得到的最大横向沉降值为7.2mm,可知横断面沉降的实测值和数值模拟值吻合度较好,说明数值结果比较可靠。对于地表纵向沉降,开挖过程中,掌子面前方一定距离处地表形成隆起,这与盾构机与土体之间的摩擦有关,在开挖之后距离掌子面20m左右地表沉降基本趋于平稳,左右线的实测值与数值模拟值吻合度良好。断面二隧道穿越的粉质黏土厚度比较大,且自稳性较好,故断面二沉降要小于断面一的沉降,因此隧道开挖面处的地层特性对盾构开挖的稳定性十分重要。  相似文献   

13.
确保盾构区间隧道在下穿施工过程中能够有效地保护既有结构物的安全,是目前地铁隧道下穿施工亟待解决的主要问题之一。以实际工程项目为基础,通过有限元软件GTS-NX构建三维实体模型,基于实际施工情况前提下,将盾构隧道下穿既有普铁路基作为分析对象,通过数值模拟分析法分析其变形规律,并对施工过程中路基的沉降规律进行观察。为后续施工期间采取科学合理的安全措施提供指导,同时也为类似的相关工程开展提供参考。  相似文献   

14.
依托武汉地铁11号线光谷四路站到光谷五路站施工段,研究盾构施工参数的选取对盾构管 片力学行为的影响,并针对可能出现的问题提出相应的控制措施。采用Abaqus 有限元计算软件对该工程中的S形曲线典型段的施工过程进行精细化仿真模拟,结合施工过程中典型监测点的长期监测资料,总结施工参数对隧道整环管片变形的影响规律,为施工过程中的隧道整环管片变形 预测与控制提供理论支撑。结果表明,围岩地质条件、注浆质量、土仓压力对盾构管片力学行为的影响较大,盾尾间隙对盾构管片力学行为的影响较小。将监测值与模拟值对比分析,发现两者 规律基本一致,说明对隧道工程进行数值模拟预测和仿真分析具有合理性和适用性。  相似文献   

15.
以青岛地铁2号线汽车东站-东韩站区间穿越张村河段为工程依托,运用有限元软件ABAQUS建立3D模型,对地铁隧道穿越河流的动态施工全过程进行数值模拟,分别从桥隧不同间距、隧道不同埋深和有无地下水等三个不同影响因素,计算和分析地铁隧道开挖对既有桥梁桩体的受力和变形的影响规律。桥隧间距选取6 m、9 m、12 m、15 m和18 m,地铁隧道埋深选取4 m、5. 5 m和7. 5 m,并考虑有无地下水作用,在单一变量下共建立8组不同模型,通过模拟结果曲线的对比来分析不同因素的影响作用。结果表明,桥隧间距越近、埋深越大、有地下水作用时地铁隧道开挖引起的临近桥桩的影响就越大;而且在整个地铁施工过程中地铁基坑开挖到坑底时影响最大。  相似文献   

16.
软土地层地铁隧道施工对地下管线的影响   总被引:2,自引:0,他引:2  
为减小软土地层地铁隧道施工引起的地表沉降对地下管线的影响,考虑流固耦合效应和施工效应的综合作用,根据管线允许的安全控制标准,采用FLAC3D建立的数值模型,对降水、动态降水和非降水3种施工方法进行了对比研究.结果表明,非降水施工法是控制地层固结沉降最有效的施工方法.深圳地铁1号线采用该施工方法,保证了煤气管线在施工期间安全使用.  相似文献   

17.
刘均红 《北方交通》2011,1(7):55-58
以西安地铁某大型车站深基坑工程为背景,采用现场监测与三维数值模拟相结合的方法,研究了开挖过程中地铁车站深基坑的变形规律。结果表明,围护桩的变形直接关系到基坑的稳定和安全;开挖使得基坑周围土体下沉,地表沉降呈抛物线型;计算结果与监测结果基本一致,运用FLAC3D数值计算方法研究深基坑的变形规律是可行的、可靠的。  相似文献   

18.
针对地铁盾构施工的地层变形特征,分析引起地层变形的因素和变形机理,介绍地层变形预测分析方法,结合广州地铁具体实例,对地铁盾构隧道施工中地层变形进行了预测和分析,提出了盾构前方的隆陷控制、盾构通过时的沉降、固结沉降的控制等控制地层变形措施。  相似文献   

19.
高速公路隧道施工全过程三维弹塑性数值模拟   总被引:2,自引:0,他引:2  
为了获得开挖过程中隧道结构体应力、应变和位移规律,以渝黔二期笔架山隧道北端洞口段实态建模,采用有限元程序对施工全过程进行了三维弹塑性数值模拟,并与现场实测数据进行了比较.研究结果表明,开挖对围岩影响较大的范围在开挖面四周5m以内,且上台阶开挖的影响大于下台阶开挖;围岩沉降和水平位移在开挖前已完成1/3;围岩塑性区位于开挖面前1.5m范围内,锚杆主要受本施工段上台阶开挖的影响.  相似文献   

20.
基于多年对盾构施工技术的研究,同时结合沈阳地铁二号线松陵区间盾构施工工程实例,阐述土压平衡盾构机施工对周围土体扰动的影响程度,可为类似工程参考和借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号