首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
汽轮机是船舶电力系统的重要组成部件,其系统运转的好坏关系到船舶航行的顺利进行,对船舶汽轮机故障诊断及预测是保障其良好运行的前提。传统的汽轮机故障诊断是对不同类型数据源进行单维度网络分析,随着设备复杂度的增加,故障诊断及预测的准确性与实效性已经越来越不能满足现代船舶故障诊断系统的要求。本文对汽轮机的故障采集数据进行多维度融合,建立集成神经网络的船舶汽轮机故障诊断及预测模型,最后进行仿真。  相似文献   

2.
为了更好地保障船舶航行安全,有效提高船舶的故障定位和检测能力,提出了使用数据挖掘实现舰船故障数据定位方法,通过对舰船故障数据进行实时采集和分类挖掘获取船舶航行过程中的异常数据,实现对船舶故障数据关联规则特征的准确提取。在进行故障定位的过程中,合理并利用电磁探测器和声敏传感器等设备进行故障诊断,并对不同类别船舶故障数据的高维特征融合的研究采用数据挖掘分析算法,利用数据挖掘分类器对船舶故障数据进行分类识别和定位挖掘,从而有效保障船舶故障数据定位的精确度和有效性。最后通过实验结果表明,使用数据挖掘实现舰船故障数据定位方法具有较高的故障定位精度。可以应用于船舶故障实时诊断,有效提高船舶故障诊断的实时性。  相似文献   

3.
船用柴油机作为船舶航行中的动力源,具有非常重要的作用。但柴油机在运行过程中的运行状态及故障发生都对船舶的正常运行影响很大。本文通过研究灰色数据挖掘的特点,结合船舶柴油机的结构与故障特性,研究出一种基于灰色数据挖掘的故障诊断方式,通过对灰色关联算法在计算机上进行编程仿真,检验这种方法对船舶柴油机的故障诊断具有较好的诊断结果,对船舶柴油机的正常航行具有一定的意义。  相似文献   

4.
如果船舶的主发动机不能正常的工作,船舶的安全航行就难以保证。传统的故障诊断系统主要依靠船员的经验来分析每台设备的参数并推断出故障的类型。该方法精度低,成本高,无实时性。为解决这一问题,基于数据挖掘技术设计了一种新型船用柴油机故障诊断优化系统。本文将数据挖掘技术应用故障诊断,利用算法上的高效,包括VSM算法和关联规则,建立远程船舶主机故障诊断系统,对主机的运营进行实时动态的仿真。对发动机各子系统运行状态的实时监控可以与整个船用柴油机的故障特征相结合。  相似文献   

5.
为适应大型船舶电力系统的数字化和信息化发展需求,建立一个以数据仓库技术为基础,以数据挖掘技术为手段的故障诊断决策系统,实现对船舶电力系统故障的分析和预测。融合数据仓库技术和数据挖掘技术,设计船舶电力系统故障信息数据仓库系统架构,并对数据挖掘技术的主要应用方法和数据挖掘算法的性能进行分析,在此基础上提出基于Prism算法的电力监控信息数据挖掘方法,并通过仿真试验验证该方法的有效性。试验结果表明,该方法能为船舶电力系统故障诊断提供辅助决策,进而合理安排检修计划,提高船舶电力系统的安全性和稳定性。  相似文献   

6.
舰船电子设备故障与多种因素相关,使得舰船电子设备故障变化具有随机性,传统方法难以描述舰船电子设备故障的变化特点,诊断效果差。为了克服当前舰船电子设备故障诊断存在的不足,提出数字信号处理器的舰船电子设备故障诊断模型。首先采用数字信号处理器对舰船电子设备状态信号进行采集,同时去除信号中的一些噪声,然后从舰船电子设备信号中提取有效的特征,通过筛选最有效的舰船电子设备故障诊断特征进行建模,最后引入数据挖掘技术建立舰船电子设备故障诊断模型,并在相同环境下,与其他模型进行舰船电子设备故障诊断仿真模拟测试。结果表明,本文模型的舰船电子设备故障诊断误差要比对比模型更低,且减少了舰船电子设备故障诊断复杂度,诊断效率得到明显的提升。  相似文献   

7.
故障诊断技术是一门新兴技术,随着数学与计算机科学的不断发展,故障诊断技术也有了迅速的进步,现在神经网络算法、人工智能等先进技术都大量的应用于故障诊断中。船舶的动力系统是其推进力的来源,动力系统的正常运行对船舶意义重大。为了提高船舶动力系统的可靠性与安全性,必须采取一定的措施预防与诊断其故障类型。本研究针对船舶动力系统的故障诊断问题,研究了一种基于BP神经网络算法的诊断技术,并建立了动力系统故障数据挖掘与诊断系统。  相似文献   

8.
针对舰船汽轮机机组出现的基础松动故障问题,考虑汽轮机叶尖间隙汽流激振的影响,建立汽轮机汽流激振力作用下的转子松动故障分析模型。采用数值求解方法,结合系统响应的分岔图、轴心轨迹图、Poincare截面图、频谱图等分析研究转速、支座质量、质量偏心等参数对系统非线性振动响应的影响,为汽轮机叶尖间隙汽流激振下具有松动故障的汽轮机转子系统动力学特性分析和故障诊断提供一定参考。  相似文献   

9.
舰船故障建模是进行故障诊断的主要技术,舰船故障的种类多,变化复杂,兼具有随机性和规律性,当前舰船故障诊断的建模方法无法描述其变化特点,使得舰船故障诊断结果不理想。为了改善舰船故障诊断效果,设计了基于贝叶斯网络的舰船故障建模方法。首先对舰船故障诊断的工作原理进行分析,指出当前舰船故障诊断方法出现缺陷的影响因素,然后采用贝叶斯网络对舰船故障诊断过程进行模拟和建模,最后采用仿真实验与其他舰船故障诊断模型的结果进行对比。结果表明,贝叶斯网络的舰船故障诊断正确率更高,可以更好反映舰船故障诊断随着时间改变的变化趋势,避免了出现故障诊断错误率高的难题,具有广泛的应用前景。  相似文献   

10.
针对冷藏集装箱故障诊断的问题,从5个不同的角度对冷藏集装箱故障进行分类,并分析其在冷藏集装箱故障诊断中的应用方式及注意事项,结果表明,合理的故障分类可以降低故障诊断的难度,提高故障诊断的准确率。根据不同的故障分类方法制定更加合理的管理制度,可以减少不必要故障发生,提高故障诊断率。  相似文献   

11.
采用ARM作为机舱测量系统中的主控制器,利用ARM的高性能和可裁减性构建CAN总线通信控制网络,可以实现系统全部节点之间的数据共享以及相互之间的协同工作。  相似文献   

12.
创新教育是研究生教育质量的灵魂.本文在分析了电子导师这一新型的研究生教育培养模式的基础上,实现了一种面向研究生创新能力培养的电子导师平台,并对平台的定位和作用进行了深入研究,同时还分析了平台的总体设计思想和技术实现框架,电子导师解决研究生教学中的一些基础问题的意义,促进电子导师在培养研究生创造性思维中的作用,具有重要的理论意义及广泛的应用前景.  相似文献   

13.
赵彦肖 《中国修船》2007,20(Z1):7-8
随着网络技术的飞速发展,以网络为基础的电子商务改变着企业的经营管理模式,形成全球化的网络经济.网络财务以其独特优势随之产生并发展,它突破了时空的限制,实行了适应网络环境的新处理方式,必将大大提高企业的管理效率,为企业创造更多的财富.文章介绍了网络财务产生的必然性、特点、应用及存在问题.  相似文献   

14.
依托有线专网和北斗卫星网,研制覆盖随船器材供应链和被服务方的全资可视化系统,实现被服务方随时获取自己申请单的供应链信息,包括器材申领、器材批复、器材运输、器材维修等信息,达到被服务方对整个随船器材服务流程的全维可视和全程可控的目的,从而为随船器材的精确化保障提供技术手段。  相似文献   

15.
用力学分析的方法,解决船舶非单点搁浅时船底受力大小及脱浅拖力最小值的计算方法问题,并由此提出船舶自行脱浅的两种方法。  相似文献   

16.
针对持续性跟踪无人艇的探测技术   总被引:2,自引:2,他引:0  
《舰船科学技术》2013,(4):98-101
美国国防先期研究计划局(DARPA)提出的持续性跟踪无人艇(ACTUV)项目对潜艇的隐蔽性和安全性形成重大挑战。加强对ACTUV的搜索、探测、定位,保障潜艇部队安全,是我国海军面临的新任务。本文研究从天基、海基、空基进行搜索侦察,并提出一种多维数据融合定位技术,为相关科研项目提供参考。  相似文献   

17.
针对目前国内外造船起重机安全性评价方法的不足,研究基于模糊层次综合评判法(FAHP)的造船起重机金属结构安全性评价方法,采用层次分析法(AHP)确定指标权重,将模糊综合评判理论运用于起重机金属结构综合评估中。以造船门座起重机为例,建立多指标、多层次安全性评价模型,对指标状态值进行无量纲化处理,运用层次分析法确定权重值,采用模糊综合评判理论计算各层评价值,并最终得到整机金属结构安全指数,为起重机使用企业和特检部门开展工作提供参考依据。  相似文献   

18.
《中国修船》2019,(3):51-54
对于拖船、拖网渔船及高速艇等船型,其螺旋桨处在斜流工作条件下。为研究斜流对螺旋桨水动力性能的影响,文章使用商用流体力学软件STAR-CCM+对不同斜流角下螺旋桨的水动力性能进行计算。计算结果表明,斜流会导致螺旋桨敞水性能下降并诱发横向力,对船舶航速、传动轴系及船舶操纵性产生不利影响。  相似文献   

19.
黄骅港一期翻车机系统主要翻卸车型为C64和C70,翻卸模式为解列翻卸和不解列翻卸两种。在解列翻卸C64车型的过程中,存在推车机推空车皮时火车车钩不正的问题。  相似文献   

20.
纳米材料依旧是21世纪的明星材料,纳米隔热材料由于其明显的低热导率,一出现就成为舰船行业的研究热点。与传统的隔热材料相比,相同的隔热面积需要的纳米隔热材料更少。本文以纳米孔隔热材料的制造工艺为例,探索纳米隔热材料的工艺流程,并将纳米孔隔热材料和传统的隔热材料的压缩强度进行对比,对不同温度下纳米孔隔热材料的加热线收缩率进行研究。结果发现,纳米孔隔热材料的压缩强度高于传统的无机隔热材料,却低于硅酸铝纤维,纳米孔隔热材料的最佳使用温度为1 000℃左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号