首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
  目的  水下非接触爆炸冲击能引起船体强烈的总纵弯曲运动,威胁船体总纵强度。采用详细的有限元建模进行水下非接触爆炸计算虽然可以获得船体爆炸弯矩,进而计算船体水下非接触爆炸作用下的船体总纵强度,但该方法工作量较大且较为复杂。为此,  方法  提出一种基于梁模型的船体水下非接触爆炸弯矩简化计算方法,运用ABAQUS有限元软件,建立船体详细有限元模型和船体梁简化模型,并分别进行水下非接触爆炸工况下危险剖面的爆炸弯矩计算。  结果  计算结果表明,建立的船体梁简化模型不仅建模简单,而且爆炸弯矩计算精度良好。  结论  所得结果可为水下非接触爆炸下船体爆炸弯矩的快速估算提供参考。  相似文献   

2.
水下爆炸中的气泡脉动载荷会造成舰船的鞭状运动,对其总纵强度产生很大威胁,是战争中造成船体总体毁伤与丧失生命力的主要原因之一。基于势流理论,推导并建立船体梁气泡弯矩的理论与计算方法,同时综合考虑气泡弯矩、船体静水弯矩、波浪弯矩及砰击弯矩等其他影响因素,建立一套完整的气泡作用下船体梁总纵强度估算方法。通过算例,校核典型工况下多种弯矩同时作用时船体梁的总纵强度。计算结果表明,气泡脉动载荷产生的总纵弯矩具有周期性鞭振特性,且数值大于其他弯矩。在评估舰船总纵强度与生命力时,应充分考虑气泡脉动载荷的影响。  相似文献   

3.
[目的]舰船在执行任务的过程中有可能因同时遭受波浪载荷与水下爆炸气泡脉动载荷的联合作用而使船体响应发生“叠加效应”,导致总强度的损失,因此需要探索水下爆炸气泡脉动与波浪联合作用时船体梁的动力响应规律。[方法]首先,采用理论分析的方法建立船体梁的简化模型,并对水下爆炸气泡脉动载荷与波浪载荷进行求解;然后,基于Hamilton原理,分别推导两端自由船体梁在波浪载荷与水下爆炸气泡脉动载荷单独作用及联合作用下的运动微分方程;最后,基于对运动微分方程的求解,分析船体梁的自由振动响应在与外载荷组合的3种工况下简化模型的运动响应。[结果]结果显示,在波浪载荷与水下爆炸气泡脉动载荷的联合作用下,船体梁的运动响应相比2种载荷单独作用时运动响应的线性叠加值增大了15%。[结论]所做研究可为舰船结构在联合载荷作用下运动响应分析的计算程序开发提供参考。  相似文献   

4.
水下爆炸载荷作用下舰船总体毁伤模式研究   总被引:1,自引:0,他引:1  
建立舰船三维有限元模型,采用数值仿真方法计算舰船总体在水下爆炸载荷作用下的动响应,讨论船体主要构件破坏模式以及舰船鞭状运动对船体总纵强度的影响,总结舰船总体在冲击波阶段与气泡脉动阶段舰船毁伤模式及规律。  相似文献   

5.
水下爆炸气泡载荷对舰船的总体毁伤研究   总被引:1,自引:0,他引:1  
张弩  宗智 《中国造船》2012,(3):28-39
在水下非接触爆炸中,气泡载荷因其脉动频率经常接近于舰船的垂向固有频率而造成舰船总体毁伤。阐述水下爆炸气泡与弹塑性船体梁之间的流固耦合理论,建立了一个考虑气泡迁移,自由面效应和气泡阻力的气泡模型和船体梁的弹塑性模型。以实船为算例,计算了气泡载荷作用下船体梁的弹塑性变形,分析船体梁发生弹塑性损伤的机理和特征。  相似文献   

6.
舰船在执行任务时,不可避免的会发生敌方鱼雷、导弹等武器的打击,在水下的冲击场景主要有接触爆炸、非接触爆炸和自身冲击等,其冲击作用可能会造成船体结构的损伤,甚至造成舰船沉没等事故。因此,研究船体结构在水下冲击作用下的强度与力学响应有重要的意义。本文详细研究了水下冲击与爆炸理论,建立了水下冲击模型,并基于有限元分析软件Abaqus进行了船体的有限元建模、网格划分、冲击载荷施加与动态响应仿真。  相似文献   

7.
船舶航行安全是航海领域重点关注的问题之一,船体的总纵弯矩数值在不同情况下会发生变化,研究船体结构极限承载力是船舶安全航行的关键,为此提出总纵弯矩作用下的船体结构极限承载力分析方法。该方法利用有限元软件建立船体结构模型,计算船体结构总纵弯矩,以此为基础分别从船体梁结构挠度极限承载力和船体剖面平衡角度,计算结构极限承载力,并在有限元环境下展开多角度分析。结果表明,该方法可有效构建船体结构有限元模型,并有效分析船体结构不同总纵弯矩情况下,船体结构挠度极限承载力和中截面结构极限承载力分布情况,应用效果较为显著。  相似文献   

8.
针对船体在水下爆炸载荷作用下产生的冲击动弯矩问题进行研究。基于船体梁模型采用泰勒平板流固耦合理论对船体冲击动弯矩进行工程计算分析,并与试验数据对比分析进行有效性验证,适用于水下爆炸船体冲击动弯矩的工程化快速预报。采用该方法预报了不同船长和排水量的典型船型的冲击动弯矩,探究冲击动弯矩随舰船标准排水量变化的规律;根据上述多个船型动弯矩的大量计算结果,总结出冲击动弯矩经验计算公式,方便于工程设计应用。  相似文献   

9.
针对在已知弯矩分布时直接计算船体总纵强度的问题,结合船舶结构力学分析方法,根据已知弯矩分布反算得到作用在船体上的等效外力,利用ANSYS建立变截面空心薄壁梁理论模型,将等效外力以集中力形式加载到模型相应剖面,验证外力计算的有效性,同时利用实船整船有限元模型,选择不同的约束支点以及不同的加载方案,采用集中力加载计算船体总纵强度,提取计算后模型中节点力系构成的剪力和弯矩,与已知剪力、弯矩分布进行对比,结果表明,集中力法可用于船体总纵强度直接计算,且计算结果与已知的剪力、弯矩分布吻合较好。  相似文献   

10.
由冲击波引起的结构动力毁伤与由气泡引起的结构动力毁伤机理不同.基于双渐近(DAA)理论,建立-套有限元方法与边界元方法相结合的数值计算程序.分别研究非接触水下爆炸冲击波载荷与气泡载荷作用下三维船体结构的动响应,阐述水下爆炸载荷与三维船体结构之间的流固耦合理论.通过算例,详细讨论冲击波与气泡载荷作用下船体结构的总体响应和局部响应的-些特征与机理.计算结果表明,在非接触水下爆炸中,冲击波主要是对船体结构造成局部毁伤,而气泡则会对船体结构造成总体与局部的双重毁伤.  相似文献   

11.
《舰船科学技术》2015,(8):12-17
水下爆炸作用下舰船结构的总强度分析一直是业内水面舰船强度研究的重点内容之一。本文选取典型水下爆炸工况,借助数值仿真的手段,采用通用有限元程序Abaqus中的声固耦合法,在计及水下爆炸冲击动弯矩的条件下模拟水下非接触爆炸作用下舰船的动响应。结合各主要舰船强度规范对某水面舰船的典型剖面的水下爆炸冲击动弯矩进行初步分析,给出了各爆炸工况下不同剖面的动弯矩时历曲线,并以动弯矩所占百分比的形式展现了冲击动弯矩对舰船总强度校核的重要性。为舰船的总体结构设计提供参考。  相似文献   

12.
循环弯曲载荷下船体梁的极限纵强度   总被引:2,自引:0,他引:2  
根据生破坏的强度准则,详细讨论了循环弯曲载荷下船体梁的非弹性变形性能。给出了循环弯曲载荷下船体梁极限强度的简化分析方法。进行了纵筋加强箱形薄壁梁模型的循环弯曲试验。理论计算与试验结果作了比较,两者吻合较好。  相似文献   

13.
船体结构总纵极限强度的简化逐步破坏分析   总被引:7,自引:1,他引:6  
本文基于梁-柱理论、理想弹塑性假设、平面假设和塑性铰理论建立了拉伸和压缩加筋板单元的标准应力-应变关系曲线,开发了船体结构总纵极限强度的简化逐步破坏分析方法。应用该简化方法编制的计算程序较为详细地分析了五条船截面/箱型梁模型的总纵极限强度,结果表明本文开发的简化逐步破坏方法和计算程序是正确可靠的,可供船体结构设计参考和使用。  相似文献   

14.
船体板架在水下爆炸载荷作用下的塑性动力响应计算是舰船抗爆性能研究中的一项重要工作,鉴于有限元法对其求解的计算效率无法保证,同时解析法对其求解有技术上的困难等研究现状,提出了一种将船体板架结构简化成刚塑性十字交叉梁,并通过动量定理和动量矩定理由运动方程推导出十字交叉梁结构中横向和纵向构件二者在关联处有力的相互作用时的变形挠度的计算方法。利用此方法计算所得的结果,与实船舱段的有限元模型结果,以及实船舱段的水下爆炸试验的数据进行对比后,吻合较好。结果表明,力学模型选取是合理的,用于水下非接触爆炸的舰船板架挠度变形计算方法不仅保证了计算效率,也保证了计算精度,具有工程实用性。  相似文献   

15.
王军  孙丰  陈舸  祝祥刚 《船舶》2013,(6):40-46
针对船体舱段模型典型结构,设计易于实际操作实施的缩比模型试验方案;通过有限元软件对板架水下爆炸响应进行分析.对比各个缩比模型在水下爆炸载荷作用下的响应规律.寻找为完成不同试验目的而设计的最佳试验方案。数值分析结果表明:纵桁和实肋板梁模型在水下爆炸作用下的动力响应可验证梁在爆炸冲击载荷作用下的理论分析方法,十字交叉梁塑性变形可验证实船板架结构中交叉梁系的结构动力响应分析方法。双层底板架结构的塑性变形可对舰船局部强度考核的理论分析提供基础,缩比模型计算结果与实船较为一致。计算结果对舰船型号研制和强度考核具有理论指导意义。  相似文献   

16.
[目的]为了研究箱型梁典型节点结构在舱内爆炸下的结构强度,[方法]基于ANSYS/LS-DYNA显式动力有限元软件,首先建立箱型梁船体舱段结构的有限元模型。然后,采用ALE算法开展舱内爆炸载荷下舷侧箱型梁与强横梁连接处不同型式节点结构的动态响应数值计算。最后,在给定的炸药当量和爆点位置情况下,获得舱室结构的整体变形和破坏模式,并分析在不同节点结构设计方案下典型位置的应力特征。[结果]计算结果表明:舷侧箱型梁与强横梁连接处圆弧式和肘板式节点结构的应力峰值与甲板破口尺寸基本相当;从舱壁撕裂长度来看,肘板式稍逊于圆弧式,在中间箱型梁与强横梁连接处,圆弧连接最优,单侧肘板次之,双侧肘板最差。[结论]所得到的数值计算结果可为箱型梁节点连接结构的工程应用提供有益的参考。  相似文献   

17.
[目的]现有基于有限元强度计算的结构优化研究大多采用改写单元节点信息文件来实现参数化建模的方法,为解决在船体剖面结构优化过程中难以考虑型材数量变化的问题,提出一种基于参数化几何建模分析和人工蜂群(ABC)算法的船舯剖面结构优化方法。[方法]首先,在Matlab平台编写蜂群算法,并基于ABAQUS内核语言Python建立能够在其CAE模块中生成几何模型的脚本文件;其次,建立能够提交有限元计算和读取结果的Python脚本文件,通过将算法每次生成的解改写到脚本对应位置完成几何模型的更新,后台调用ABAQUS并依次运行脚本文件;最后,将计算结果返回到Matlab平台中进行校核,完成参数化几何建模与有限元分析。[结果]以4 600 TEU集装箱船在总纵弯矩作用下的舱段剖面结构优化为例验证了该方法的可行性,得到集装箱船舱段结构减重达18.7%。[结论]经对比分析,在设定条件下基于有限元的优化方法比基于规范的优化方法更加充分。  相似文献   

18.
在舰船结构抗水下爆炸作用响应模型研究中,为减少船体梁截面形式单一以及相似性准则的不足所带来的缩比模型较实船响应的误差,基于某水面典型舰船主要结构形式特点进行简化,保留船体梁横截面水线以上部分的矩形特征,主要改变水线以下截面形式,设计接近实船的大尺度梯形截面、弧形截面形式船体梁,爆炸药量采用某典型武器装药量,尽可能避免相似原则引起的误差。采用数值仿真方法系统对比研究截面形式变化对相同水下爆炸条件下船体梁整体运动响应特性的影响。结果表明水下爆炸气泡负压和耦合共振作用可以使得船体梁结构发生整体弯曲变形,并且弧形截面船体梁相较于梯形截面船体梁变形较大,其整体结构偏弱。  相似文献   

19.
[目的]针对复合材料上层建筑总纵强度问题,采用有限元分析法开展复合材料上层建筑总纵弯曲特性与设计要求分析。[方法]首先,分析不同长度、不同上层建筑材料等效弹性模量下简化船体模型纵向应变沿高度方向的分布规律,并利用二次函数对纵向应变分布进行非线性拟合;然后,基于拟合的结果提出复合材料上层建筑设计要求,并在结构形式与材料属性两方面对设计要求进行阐述;最后,根据弯矩有效度概念,在国军标的基础上提出不同长度、不同材料下上层建筑完全参与总纵弯曲的判定方法。[结果]分析结果表明,常见的树脂基纤维增强复合材料能够满足上层建筑结构的总纵强度要求;超过0.3倍船长的复合材料上层建筑结构应当计入剖面强度和刚度校核。[结论]所做研究可为未来我国复合材料上层建筑结构的水面舰船设计提供一定的参考价值。  相似文献   

20.
利用有限元软件ABAQUS,针对船舶结构和设备采用不同建模方式,建立4种水下远场爆炸载荷作用下全船结构冲击响应计算的有限元模型,对比分析船体结构局部与总体冲击响应。结果表明:船舶骨材结构与设备的建模方式对结构局部冲击响应如加速度、应力等影响很大,而对结构的总体响应如剖面弯矩等刚性安装设备采用质量点均摊的方式处理以减小建模的工作量。对于大型的弹性安装设备,需采用质量点和弹簧单元仔细建模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号