首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
由于再生制动控制策略直接影响了插电式混合动力汽车(PHEV)的经济性,文章提出了一种基于理想制动力分配的再生制动控制策略,这种策略能在保证制动稳定性的同时,尽可能多地回收制动能量,在Simulink平台上建立再生制动控制策略模型,并嵌入到Cruise软件中进行仿真。仿真结果表明,此模型相比没有制动能量回收的PHEV和传统汽车,都有效地提高了经济性,验证了再生制动控制策略的合理性。  相似文献   

2.
HEV制动意图识别的研究   总被引:1,自引:0,他引:1  
基于大量的工况数据建立辨识模型,实现了对制动意图的准确识别.在此基础上优化了再生制动的控制策略.仿真结果表明,通过制动意图识别可有效地优化混合动力汽车再生制动的控制策略,从而进一步改善混合动力汽车制动时的驾驶感觉和燃油经济性.  相似文献   

3.
本文中针对一款轻型混合动力汽车进行了再生制动控制策略的研究.首先,以整体效率最高为目标,提出了最大能量回收制动控制策略,并采用序列二次规划法对充电功率进行优化,获得ISG电机优化转矩.接着建立了整车仿真模型,采用模糊控制方法对优化的ISG电机转矩进行跟随控制.分别进行了NEDC循环和3种不同制动力的仿真,得到不同工况下的再生制动能量回收率.最后进行了与仿真工况相应的实车试验,验证了控制策略的有效性.  相似文献   

4.
混联式混合动力控制系统硬件在环仿真平台设计与应用   总被引:2,自引:2,他引:0  
基于dSPACE系统设计了混联式混合动力控制系统硬件在环仿真平台,其可在不进行实车试验的情况下对综合控制器进行全面、快速、充分的在线测试.平台主要由实时仿真系统、系统数字模型、部分部件实物与操控界面等组成.在该平台上完成了混合动力综合控制器ECU的在线测试,综合控制器较好地完成了控制功能.结果表明,设计的混合动力硬件在...  相似文献   

5.
CVT混合动力汽车再生制动控制策略与仿真分析   总被引:8,自引:0,他引:8  
分析了混合动力汽车制动过程中发动机反拖制动和CVT速比控制对车辆再生制动性能的影响,提出了低制动强度下仅由电机再生制动、高制动强度下电机与制动器共同制动和紧急制动时发动机参与制动的再生制动策略。对典型工况进行了再生制动仿真,仿真结果表明,CVT速比控制可使电机运行在高效区,从而获得了比传统手动变速混合动力汽车更好的制动能量回收效果。  相似文献   

6.
HEV控制器硬件在环仿真平台的研究与开发   总被引:3,自引:0,他引:3  
针对控制器传统开发方法中存在的局限性以及混合动力汽车动力传动系统控制的复杂性,应用控制系统现代开发技术,为某型混合动力客车多能源动力总成控制器开发了硬件在环仿真测试平台,该平台包括实时硬件和系统模型、信号调理电路等,并利用它对控制器进行了仿真测试。仿真测试结果与试验结果说明,所开发平台模型的精度基本能够满足仿真测试要求。控制器的环境试验和在EMC试验中的成功应用以及控制器在车上的正常运行,验证了在混合动力汽车多能源动力总成控制器的开发过程中采用自行开发硬件在环仿真测试平台这一技术方案的可行性。  相似文献   

7.
并联混合动力客车再生制动仿真研究   总被引:5,自引:0,他引:5  
建立了并联式混合动力汽车动力学模型,并对纯电机制动模式和机电混合模式混合动力汽车能量再生制动进行了仿真。仿真结果表明:对于纯电机模式,制动效能低,能量回收率达29%;对于机电混合制动模式,制动效能高,能量回收率仅2%。  相似文献   

8.
基于dSPACE实时仿真系统和CarsimRT车辆动力学软件,建立了基于硬件在环的汽车制动控制器仿真测试系统。该系统可快速、准确地进行电子制动控制器的功能测试和性能评估,以及故障在线模拟和诊断。有助于在产品开发过程中及时发现设计缺陷和潜在问题,并指导实车测试,进一步提高产品的安全性和可靠性,缩短开发周期。  相似文献   

9.
随着新能源汽车的深入研发,电机驱动控制技术的要求也越来越高,文章主要针对多轴增程式混合动力汽车驱动控制策略进行研究,提出电机驱动控制器设计架构以及电子差速控制策略,通过仿真以及实车测试对文章所提出的驱动控制策略进行验证。  相似文献   

10.
混合动力汽车再生制动的归类及其应用   总被引:2,自引:0,他引:2  
按不同的制动控制策略,将混合动力汽车再生制动系统分为具有最佳制动效果的串联制动、具有最佳能最回收率的串联制动和并联制动3种类型,并分别对它们进行了分析.提出了基于SOC、车速和制动踏板位置,动态地控制冉生制动转矩的控制策略,并将其应用于一款并联混合动力汽车上.测试结果表明:所制定的制动控制策略,可在保证安伞的前提下,更多地回收制动能量,并有较好的制动感觉.  相似文献   

11.
Most parallel hybrid electric vehicles (HEV) employ both a hydraulic braking system and a regenerative braking system to provide enhanced braking performance and energy regeneration. A new design of a combined braking control strategy (CBCS) is presented in this paper. The design is based on a new method of HEV braking torque distribution that makes the hydraulic braking system work together with the regenerative braking system. The control system meets the requirements of a vehicle longitudinal braking performance and gets more regenerative energy charge back to the battery. In the described system, a logic threshold control strategy (LTCS) is developed to adjust the hydraulic braking torque dynamically, and a fuzzy logic control strategy (FCS) is applied to adjust the regenerative braking torque dynamically. With the control strategy, the hydraulic braking system and the regenerative braking system work synchronously to assure high regenerative efficiency and good braking performance, even on roads with a low adhesion coefficient when emergency braking is required. The proposed braking control strategy is steady and effective, as demonstrated by the experiment and the simulation.  相似文献   

12.
混合动力电动汽车制动系统回馈特性仿真   总被引:5,自引:1,他引:5  
为了研究混合动力电动汽车(HEV)回馈制动特性,建立了用于城市公交的混合动力电动汽车复合制动系统的仿真模型,提出了回馈制动控制策略,分析了复合制动系统的工作过程,并探讨影响电动汽车制动系统可靠、安全和高效的主要因素,研究电动汽车复合制动系统优化途径。研究结果表明:回馈制动最低车速限值越小,制动能量回收率越大;从回收电动汽车能量角度分析,回馈制动比例应有一个有效范围值;在各种循环工况下,具有回馈制动功能时混合动力电动汽车城市客车单位里程的能量消耗可降低10%~25%。  相似文献   

13.
The braking system of hybrid electric vehicle (HEV) is composed of friction and regenerative braking system, meaning that braking torque is generated by the collaboration of the friction and regenerative braking system. With the attributes, there are two problems in the HEV braking system. First, rapid deceleration occurs due to dynamic characteristic difference when shifting the friction and regenerative braking systems. Second, the friction braking torque alters with temperature because the friction coefficient changes with the temperature. These problems cause the vehicle to be unstable. In this paper, the concurrence control and compensation control were proposed to solve these problems. And also, the concurrence control and compensation control were combined for the stability of the braking system. In order to confirm the effect of these control algorithms, the experiment and simulation were conducted. Consequently, it was confirmed that the control algorithm of this study improved the vehicle safety and stability.  相似文献   

14.
The regenerative braking system of the Hybrid Electric Vehicle (HEV) is a key technology that can improve fuel efficiency by 20∼50%, depending on motor size. In the regenerative braking system, the electronically controlled brake subsystem that directs the braking forces into four wheels independently is indispensable. This technology is currently found in the Electronic Stability Program (ESP) and in Vehicle Dynamic Control (VDC). As braking technologies progress toward brake-by-wire systems, the development of Electro-Mechanical Brake (EMB) systems will be very important in the improvement of both fuel consumption and vehicle safety. This paper investigates the modeling and simulation of EMB systems for HEVs. The HEV powertrain was modeled to include the internal combustion engine, electric motor, battery and transmission. The performance simulation for the regenerative braking system of the HEV was performed using MATLAB/Simulink. The control performance of the EMB system was evaluated via the simulation of the regenerative braking of the HEV during various driving conditions.  相似文献   

15.
When braking on wet roads, Antilock Braking System (ABS) control can be triggered because the available brake torque is not sufficient. When the ABS system is active, for a hybrid electric vehicle, the regenerative brake is switched off to safeguard the normal ABS function. When the ABS control is terminated, it would be favorable to reactivate the regenerative brake. However, recurring cycles from ABS to motor regenerative braking could occur. This condition is felt to be unpleasant by the driver and has adverse effects on driving stability. In this paper, a novel hybrid antiskid braking system using fuzzy logic is proposed for a hybrid electric vehicle that has a regenerative braking system operatively connected to an electric traction motor and a separate hydraulic braking system. This control strategy and the method for coordination between regenerative and hydraulic braking are developed. The motor regenerative braking controller is designed. Control of regenerative and hydraulic braking force distribution is investigated. The simulation and experimental results show that vehicle braking performance and fuel economy can be improved and the proposed control strategy and method are effective and robust.  相似文献   

16.
In recent years, a hybrid electric vehicle (HEV) has been considered a successful technology. Especially, in case of a full HEV, the motor can drive the vehicle by itself at low velocity or assist the engine at high load. To improve the hybrid electric vehicle’s efficiency, a regenerative braking system is also applied to recover from kinetic energy. In this study, an experimental control apparatus was set up with a parallel hybrid electric vehicle mounted on a chassis dynamometer to measure ECU (engine control unit) and MCU (motor control unit) signals, including the current and state of charge in the battery. In order to analyze regenerative braking characteristics, user define braking driving cycle was introduced and carried out using different initial velocities and braking times. The FTP 75 driving cycle was then adapted under different initial SOC (state of charge) levels. The experiment data was analyzed in accordance with the vehicle velocity, battery current, instant SOC level, motor RPM, engine RPM, and then vehicle driving mode was decided. In case of braking driving cycle, it was observed that SOC were increased up to 1.5 % when the braking time and the velocidy were 6 second and 60 km/h, respectively. In addition, using the FTP 75 driving cycle, mode 1 was most frequently operated at SOC 65 conditions in phase 1. In phase 2, due to frequent stop-go hills, percentage of mode 1 was increase by 22 %. Eventually, despite of identity, it was shown that the characteristics of phase 3 differed from phase 1 due to the evanishment of the effects of initial SOCs.  相似文献   

17.
轻度混合动力汽车制动能量回收控制策略研究   总被引:12,自引:0,他引:12  
李蓬  金达锋  罗禹贡  任勇  许少文 《汽车工程》2005,27(5):570-574,606
以某轻度混合动力电动汽车为研究对象,分析了,制动能量回收系统在制动回收工作过程中的控制策略,并在分析的基础上建立其在制动过程中的制动力分配模型和数学模型,利用6个典型的循环工况来评价现有制动力分配策略的优劣,并与Advisor中的制动力分配策略进行了比较。无论是燃油经济性、整车能量效率、回收能量占燃油消耗的百分比,还是能量回收率都有明显的提高。  相似文献   

18.
本文中首先基于电机等效电路模型,分析了车用内置式永磁同步电机的耗能制动状态和回馈制动状态;然后根据电机矢量控制原理,对控制电流指令进行解析,并经试验数据的验证;接着计算得到永磁同步电机最优回馈转矩曲线,并据此提出一种制动回馈能量最优的串联制动控制策略。最后针对某P4并联混合动力商用车,仿真分析了在C?WTVC、CHTC?TT循环工况和试验采集到的某段省道工况下,并联制动和所提出的串联最优制动控制策略下的百公里油耗和制动回收能量。结果表明,与并联制动控制相比,基于电机最优回馈转矩曲线的串联制动控制策略可降低油耗,并回收更多的制动能量,实现制动回收能量和燃油经济性的提升。  相似文献   

19.
肖岩  何彬 《汽车科技》2012,(4):20-26
在介绍和分析四驱强混系统架构和零部件功能特性的基础上,系统地提出了插电式四驱强混汽车的整车控制策略开发方法,包括考虑整车舒适性的减振控制、整车经济性的再生制动控制和整车驱动模式的切换、AMT换挡控制等策略。由Matlab/Simulink搭建整车控制策略模型并生成代码,目前策略已在奇瑞自主开发的整车控制器上得以实现,并完成了在整车仿真平台上的仿真验证和在插电式混合动力样车上的试验验证,通过对试验数据的分析,验证了该控制策略的可行性。  相似文献   

20.
分析了电动汽车制动能量回馈的特点,针对电动汽车制动能量回馈时强鲁棒性的需求,设计了一种基于Sugeno模糊逻辑的制动能量回馈系统,以满足能量回馈的要求,该回馈系统提高了整车的制动性能以及续驶里程,也使整车的动力性、安全性和舒适性达到较好的平衡,文章同时估算了这种控制策略的能量回收效率。经仿真和实际测试,结果表明所提策略满足总体设计的性能指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号