首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于选定的三次抛物线剪滞翘曲位移函数,采用能量变分法推导出考虑截面配筋后的剪力滞控制微分方程,研究截面配筋对变截面悬臂箱梁剪力滞效应的影响。结合实际施工案例,利用差分法计算分析了不同荷载作用下,不同配筋率时施工至最大悬臂状态的箱梁剪力滞效应。研究结果表明:截面配筋对变截面悬臂箱梁剪力滞效应有一定影响,随着配筋率的增大,不同类型荷载作用下附加弯矩均增大,但箱梁不同部位的剪力滞系数变化不同。均布荷载作用下,剪力滞系数最大增加5.16%,最大减少24.42%;集中荷载作用下剪力滞系数最大增加2.77%,最大减少1.92%。  相似文献   

2.
为研究考虑截面配筋后的混凝土箱梁在开裂状态下的剪力滞效应,基于变分原理建立了考虑截面配筋率的箱梁剪力滞效应分析的控制微分方程,并推导出箱梁开裂前后的微分方程表达式。结合具体箱梁算例,分析了2种不同配筋率的箱梁在不同荷载作用下开裂前后的剪力滞效应。结果表明:集中荷载或均布荷载作用下,初始开裂截面及集中荷载作用截面剪力滞效应均发生突变;配筋率对开裂状态箱梁的剪力滞效应的影响大于其对于未开裂状态箱梁的影响;2种状态下最大影响位置均为初始开裂截面,剪力滞系数变化最大可达10.31%。  相似文献   

3.
从剪力滞翘曲正应力自平衡条件出发,引入修正系数对翘曲位移函数进一步修正,选取剪力滞效应引起的附加挠度为广义位移,将箱梁的剪力滞变形状态从初等梁挠曲变形状态中分离出来作为一种独立的变形状态分析,应用能量变分法建立箱梁截面控制微分方程,结合简支边界条件分别给出集中荷载和均布荷载作用下箱梁附加挠度和初等梁挠度的解析解。数值算例表明,初等梁挠度解和材料力学初等梁挠度解、跨中截面测点本文应力解和文献有限元解均吻合良好,证明将剪力滞纵向翘曲模式与初等梁竖向挠曲模式分离的假设是正确的。挠度研究表明,剪力滞效应对均布和集中荷载跨中挠度分别提高了3.17%和3.73%。  相似文献   

4.
变截面箱梁剪力滞及剪切变形效应近似计算方法   总被引:1,自引:0,他引:1  
变截面箱梁因其抗弯刚度沿梁轴向变化,通常采用有限元法分析,本文基于等效刚度及等效刚度比法,提出了一种可同时考虑剪力滞效应及剪切变形效应的,适用于手算的变截面箱梁荷载作用下挠度及剪滞系数的近似计算方法.通过一变截面悬臂箱梁算例分析,与初等梁理论计算结果进行了比较.结果表明:不考虑剪力滞效应及剪切变形效应将使得挠度计算结果...  相似文献   

5.
为分析变截面连续梁的剪力滞效应,推导了变截面连续梁剪力滞效应的比拟杆控制方程,以某三跨连续梁为例检验了本文算法的正确性,讨论了箱梁梁高变化对连续箱梁剪力滞系数的影响,通过分析箱梁顶板和腹板内剪力流沿跨长的分布规律,探讨了梁高变化对连续箱梁正负剪力滞的影响规律。研究发现:连续梁正弯矩区呈现正剪力滞现象,负弯矩区的剪力滞现象与悬臂梁类似;梁高沿跨径方向的变化减弱了连续箱梁负弯矩区内剪力滞效应,但增大了正弯矩区的正剪力滞效应;工程设计时可以增大连续梁在负弯矩区内梁高的变化梯度,并减小正弯矩区内梁高的变化梯度,以最大程度地减小箱梁剪力滞效应。  相似文献   

6.
在位移场中引入挠度1阶导数考虑翼板局部弯曲,添加剪力滞强度函数和截面转角计入翼板剪力滞效应和波形钢腹板剪切变形,基于能量变分原理获得波形钢腹板组合箱梁的控制微分方程,进而推导包括挠度在内的综合考虑翼板局部弯曲、剪力滞效应和波形钢腹板剪切变形的位移变量解析解,并分析翼板局部弯曲和剪力滞效应对不同高跨比、腹板高度占比、宽跨比、板宽比组合箱梁挠度的影响。结果表明:该解析解能较精确地计算组合箱梁的挠度;忽略翼板局部弯曲和剪力滞效应将导致组合箱梁的挠度计算结果误差过大;对于波形钢腹板组合箱形连续梁,不考虑翼板局部弯曲和剪力滞效应,跨中挠度将分别被高估13.0%和低估7.0%;剪力滞效应对翼板与波形钢腹板间的剪力分配几乎无影响,翼板局部弯曲会显著降低波形钢腹板剪力承担比,大大减小梁体挠度;剪力滞对挠度的放大效应随宽跨比的增大而增大,而翼板局部弯曲对挠度的减小作用随着高跨比和宽跨比的增大及波形钢腹板高度占比的减小而显著提高;翼板局部弯曲和剪力滞效应对连续梁挠度的影响比简支梁更大。  相似文献   

7.
张元海  林丽霞  李乔 《铁道学报》2011,33(5):104-108
在选取薄壁箱梁剪力滞控制微分方程的齐次解作为单元位移函数建立形函数矩阵基础上,运用虚功原理推导竖向集中荷载作用下单元等效节点力公式,提出双室箱梁的合理剪滞翘曲位移函数。通过对变截面悬臂箱梁有机玻璃模型进行计算,验证提出的梁段单元对分析变截面箱梁的有效性。结合实际箱梁算例,分析预应力混凝土变截面连续箱梁的挠曲性能。研究结果表明:所提出的梁段单元用于变截面箱梁分析时,具有较高的计算精度;在竖向集中荷载作用下,箱梁剪滞力矩图是一条平滑曲线,任意截面处剪滞力矩均不大于弯矩;剪滞效应使连续箱梁的跨中挠度明显增大,工程实践中必须认真对待。  相似文献   

8.
变分原理分析混凝土箱梁的剪力滞效应   总被引:1,自引:0,他引:1  
本文针对翼板沿截面宽度方向变厚度的混凝土箱梁,利用势能变分原理,建立单室混凝土箱梁的剪滞效应分析方法。基于选定的剪力滞翘曲位移函数,提出变厚度翼板的广义截面常数计算公式。针对常见的简支梁和悬臂梁,导出集中力和均布荷载作用下的考虑剪滞效应的纵向应力和竖向挠度计算公式。通过对算例混凝土简支箱梁的剪力滞效应采用板壳数值解和本文理论解的对比分析,验证本文分析方法的精度。通过改变翼板厚度,研究混凝土箱梁翼板厚度变化对剪力滞效应的影响规律。  相似文献   

9.
在变分法薄壁箱梁剪力滞基本微分方程的基础上,提出一个可考虑集中弯矩影响的分析箱梁剪力滞效应的有限梁单元。该单元每节点有两个剪力滞自由度,可适应各种边界条件和加载条件。定义考虑集中弯矩影响后的广义剪力滞位移向量,利用单元的边界条件导出箱梁考虑剪力滞效应的单元系数矩阵,再按结构系统分析时剪力滞广义平衡与变形协调条件导出考虑集中弯矩影响的广义荷载列阵计算公式。对简支梁、悬臂梁和连续梁在不同荷载作用下的剪力滞效应进行分析,并与变分法解析结果作对比,表明本文方法是可靠和有效的,可以分析任意结构型式的箱梁在包括集中弯矩在内的任意荷载作用下的剪力滞效应。  相似文献   

10.
钢筋混凝土单筋矩形梁正截面承载力分析   总被引:3,自引:0,他引:3  
研究目的:通过引入经济配筋率,分析配筋率、梁截面尺寸与抗弯承载力之间的关系,推导出按正截面承载力要求进行梁高估算的直接公式,并提出综合考虑抗弯承载力及挠度验算的方法来进行单筋矩形梁正截面优化设计,从而町简便地确定合理的截面尺寸及纵向配筋量.并探讨纵向配筋率的变化对挠度及最大裂缝宽度的影响,以及配筋率与极限弯矩、荷载效应标准组合弯矩值之间的关系.研究结论:利用正截面承载力估算梁高的直接估算式,能在满足梁正截面承载力要求及经济配筋的同时,结合满足挠度控制要求的跨高比限值进行截面设计.又可对某些大截面尺寸受弯构件采用正截面承载力及挠度控制的方法进行优化设计.对常用的配筋率范围ρ∈[0.6%,1.5%],在梁截面尺寸、材料强度等级不变的情况下,当荷载增加时,按极限承载力设计的配筋率随之增加,此时尽管梁的刚度有所提高,但其跨中挠度值也增大.因此,在进行最大裂缝宽度计算时,虽由于荷载的增大会导致相关参数变化,但配筋率的增大能较好地控制裂缝宽度.  相似文献   

11.
钢-砼组合箱梁考虑滑移时剪力滞效应分析   总被引:3,自引:0,他引:3  
在假定的位移模式及相应的假定条件下,根据组合箱梁的应变表达式,采用虚功原理推导出平衡和变形协调方程。通过分部积分得到组合箱梁考虑相对滑移和剪力滞效应的微分方程以及相应的边界条件,利用差分法来求解带有边界条件的微分方程组。以带有悬臂翼板的钢 砼组合箱梁为例分析其考虑滑移时的剪力滞效应,通过算例可以看出砼板的应力随剪力连接件的刚度增大而增加,钢箱梁的应力和组合箱梁的挠度随剪力连接件的刚度增大而减小。  相似文献   

12.
为了研究波形钢腹板曲线结合梁的弯扭效应,基于波形钢腹板的特点,综合考虑曲率影响、截面剪力滞效应、波形腹板剪切效应、扭转和畸变效应,采用能量变分法推导了波形钢腹板简支曲线结合梁在弯扭作用下的控制微分方程,采用伽辽金法求解得到了其弯扭效应的解析解,并对曲线半径和圆心角进行了参数分析。随曲线半径的增大,波形钢腹板简支曲线结合梁的跨中挠度、扭转角、畸变角和剪力滞附加弯矩均增大,但扭弯应力比减小;随圆心角的增大,跨中挠度、扭转角和畸变角均增大,剪力滞附加弯矩基本不变,扭弯应力比则线性增加。说明曲线半径的减小和圆心角的增大,可使波形钢腹板简支曲线结合梁的扭转效应增强,弯曲特性减弱,圆心角和曲线半径是表征其弯扭效应的两个重要指标。  相似文献   

13.
选取二次抛物线作为剪力滞翘曲位移函数,用能量变分法导出双室箱梁剪力滞控制微分方程。通过分别建立单元两端支点处和梁轴处位移之间的变换关系,考虑弯曲、约束扭转及剪力滞变形之间的耦合关系,提出一种适用于斜交支承连续箱梁剪力滞效应分析的梁段单元。对一斜交支承3跨连续双室箱梁模型的计算值与ANSYS壳单元计算值和实测值均吻合良好,证明该单元是可靠的。详细分析斜交支承角度变化对斜交支承3跨连续箱梁剪力滞效应及内力分布的影响,结果表明:与常规支承箱梁相比,斜交支承箱梁的剪力滞效应更为显著;控制截面的弯矩和剪滞力矩均随着斜交支承角度增大而减小,但双力矩却随斜交支承角度增大而增大;荷载横向作用位置对双力矩的分布有显著影响;剪力滞和约束扭转引起的翘曲应力在总应力中占较大比例,设计中必须认真对待。  相似文献   

14.
在薄壁箱梁剪力滞变分法原理的基础上,提出一种可以考虑剪力滞与梁弯曲刚度耦合影响的箱梁剪力滞效应的有限梁段方法,导出相应的有限单元公式。该方法在梁段单元每节点上采用两个剪力滞自由度,以适应不同的剪力滞位移边界条件。分析简支梁和悬臂梁两种不同边界形式的箱梁在均布荷载和集中荷载等不同荷载条件下的剪力滞系数和考虑剪力滞影响的梁的挠度,并与相应的变分法解析结果作对比,验证本方法的有效性和可靠性。算例结果表明,剪力滞对梁弯曲刚度的影响是明显的,且梁的刚度越大,这种影响的比例就越大。  相似文献   

15.
在箱形梁挠曲分析基础上,提出一种判别箱形梁正负剪力滞方法,导出用截面几何特性和广义力矩表达的判别式,结合实例判别简支箱梁、悬臂箱梁、外伸箱梁和连续箱梁正负剪力滞。与通过比较弯矩和附加弯矩之间相互关系判别方法相比,所提出方法更适合于复杂型式箱梁正负剪力滞判别。研究结果表明:箱形梁发生正剪力滞还是负剪力滞,主要取决于其横截面尺寸及弯矩与剪力滞力矩之间相对大小;对于在竖向荷载作用下有正、负弯矩分布箱梁,在反弯点附近梁段内判别式参数有"跳跃"现象;在弯矩分布呈折角处,剪力滞力矩分布比较平滑。  相似文献   

16.
为了计算分析变截面薄壁箱梁剪力滞效应及其参数的敏感性,提出一种考虑剪力滞效应的三节点板元梁段法。基于箱梁截面内应变-位移-基本变形之间的关系,以形函数作为单元内高度变化的插值函数,利用最小势能原理推导出梁段法对应的等参有限元行列式。使用编写的有限元程序对算例进行计算,梁段单元法计算结果与模型的实测值及有限元数值结果均吻合良好,验证了理论方法与公式推导的正确性和可靠性;在集中和均布荷载2种工况下,分别考察变截面薄壁箱梁剪力滞效应分析中常见影响参数的敏感性,研究结果表明:翼宽比、宽跨比和腹板倾角是影响变截面箱梁剪力滞效应的主要因素。文中方法计算精度好、效率高,对分析变截面箱梁的剪力滞效应具有一定的参考价值。  相似文献   

17.
W形腹板箱梁具有典型桁式体系受力特征,更符合单索面斜拉桥的受力要求,目前已在公路桥中推广应用。为指导铁路桥相关设计,通过采用有限元软件建立计算模型,对某铁路矮塔斜拉桥W形腹板箱梁设计开展系统分析,研究不同设计参数对箱梁各板件内力的影响、荷载作用下箱梁截面横向受力性能、以及箱梁截面剪力滞效应。研究结果表明,同梁高、不同斜腹板倾角的铁路W形截面顶板、内腹板均受拉,底板与外腹板均受压;随着边斜腹板倾角减小和内腹板倾角增大,顶板、外腹板轴力变大,内腹板轴力减小,底板轴力则基本不变;根据计算分析得到不同位置处的W形截面在铁路荷载作用下,预应力筋合理的布置方式;剪力滞效应方面,荷载作用下,支点及拉索附近的剪力滞效应较为明显,剪力滞系数约为1.1。通过研究,对铁路荷载作用下该种新型截面形式有了系统全面的认识,合理选择截面参数的同时应考虑剪力滞效应以提高结构经济性。  相似文献   

18.
采用有限元方法对混凝土连续箱梁桥的剪力滞效应进行分析,重点研究了车辆荷载类型及作用位置对箱梁剪力滞效应的影响.结果表明:不同车辆荷载作用下,箱梁剪力滞系数横向分布规律不同,荷载等级对箱梁剪力滞效应的影响较为明显;车辆荷载纵向变位对梁端截面剪力滞效应影响较大,对跨中截面影响较小,距离支座越近剪力滞效应越明显;箱梁顶板中心剪力滞系数随着车辆荷载从翼板向箱梁中心移动,将经历一个负剪力滞效应到无剪力滞效应,再到正剪力滞效应的过程,而底板剪力滞效应受荷载横向移动的影响较小;车辆荷载对其作用点附近的局部区域剪力滞效应影响较大.  相似文献   

19.
为开展单箱双室箱梁剪力滞效应的试验研究,制作了有机玻璃简支箱梁模型。在容许开裂范围内,对该试验箱梁进行集中力作用于跨中截面三腹板上方、两对称边腹板上方和中腹板上方的加载。采用DH3816应变采集仪测得跨中及1/4跨截面各关键点应变值,并用百分表测得箱梁各关键截面挠度值。测量得到的截面应力分布规律验证了箱梁截面剪力滞效应的存在。同时对该有机玻璃简支箱梁,采用空间板壳数值方法计算了3种集中力工况下截面的剪力滞分布规律。结果表明,集中力作用下双室箱梁各翼板间存在明显的剪力滞效应,且荷载的横向作用位置对箱梁截面剪力滞效应影响较大。  相似文献   

20.
为开展单箱双室箱梁剪力滞效应的试验研究,制作了有机玻璃简支箱梁模型。在容许开裂范围内,对该试验箱梁进行集中力作用于跨中截面三腹板上方、两对称边腹板上方和中腹板上方的加载。采用DH3816应变采集仪测得跨中及1/4跨截面各关键点应变值,并用百分表测得箱梁各关键截面挠度值。测量得到的截面应力分布规律验证了箱梁截面剪力滞效应的存在。同时对该有机玻璃简支箱梁,采用空间板壳数值方法计算了3种集中力工况下截面的剪力滞分布规律。结果表明,集中力作用下双室箱梁各翼板间存在明显的剪力滞效应,且荷载的横向作用位置对箱梁截面剪力滞效应影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号