首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究目的:吸声降噪通过切断噪声的传播路径,能够有效控制噪声污染。为此,总结主要的吸声原理及吸声材料,综述吸声降噪的主要工程措施,为地铁噪声的控制提供建议。研究结论:(1)吸声降噪在噪声传播途径中对其进行控制,城市地铁噪声控制还需从轨道系统、机车车辆、隧道及高架桥结构等方面综合考虑,从不同的环境功能要求上对不同频段的噪声进行控制;(2)结合多孔吸声材料、共振吸声材料和特殊吸声结构的优势,研制多层吸声结构和新型吸声材料,可有效提高其吸声系数;(3)对轨道吸声板的表面结构进行处理可以改善吸声板的降噪效果,如开设沟槽、斜坡等;(4)钢轨外侧设置吸声板,临近轨道边和机车的地方设置吸声屏障,可以提高其整体吸声效果;(5)本研究结果可为城市地铁吸声降噪的研究提供参考。  相似文献   

2.
铁路无砟轨道区段的噪声辐射比有砟轨道区段严重,常采用轨道表面铺设吸声板来降低轮轨噪声对周边环境的影响。为了控制铁路无砟轨道区段的轮轨噪声辐射,根据微穿孔板吸声理论建立多孔吸声板吸声系数计算模型,并将计算得到的吸声系数输入到轮轨噪声预测系统中,得出轨旁噪声的频谱和等效声级,分析多孔吸声板的空隙率、厚度和孔径对降低轮轨噪声的影响规律。研究结果表明:多孔吸声板的空隙率越大,对轮轨噪声的吸声效果越好,但太大的空隙率会降低对中高频轮轨噪声的吸收,建议空隙率应该控制在0.4%~0.6%之间为宜;多孔吸声板厚度越大,对轮轨噪声的吸声效果越好,但板厚过大会影响到其他行车安全问题,板厚应控制在既能高效降低噪声、又能保证行车安全的限值之内;多孔吸声板的孔径越大,对轮轨噪声吸声效果越差。  相似文献   

3.
针对高速铁路行车速度造成噪声污染急剧增加的问题,从噪声控制理论出发,对高速铁路产生噪声对沿线环境的影响特点和干扰程度进行了分析,提出了控制轮轨噪声、列车整体噪声、隧道反射噪声以降低高速铁路噪声源,以及在线路两侧设置绿化带及防声屏障限制噪声的传播等措施,从而实现高速铁路对环境保护的要求。  相似文献   

4.
针对一地铁线路在运行过程中噪声过大的问题进行勘查,发现该线路原有的减振降噪设施安装不当,且部分老化失效,从而产生了额外的振动噪声,需增加吸声降噪设施来减少地铁噪声。提出在轨道中间设置吸声板+轨道两侧安装吸声矮墙的组合降噪方案,吸声板和吸声矮墙均由吸声性能良好的陶粒混凝土模压制成。分析了该方案的降噪原理,并对其降噪效果进行了预测计算,降噪量可达10~12 dB,降噪效果良好。  相似文献   

5.
对无砟轨道吸声板降噪措施效果的评价与分析   总被引:1,自引:0,他引:1  
对框架型和双块式无砟轨道结构铺设吸声板前后进行了列车辐射噪声测试,结果表明:在距线路中心线3.75m、于轨面1.5m处,框架型板式无砟轨道结构噪声降低约2dB(A),双块式无砟轨道结构降低约1dB(A),该吸声板的吸声系数在315~3150Hz的中高频段有较好的吸声效果,能够有效吸收列车通过时主要分布在500~4000Hz中高频段的辐射噪声能量,具有一定的吸声效果。并对产生不同吸声效果的原因进行了分析。该测试结果可供铁路建设项目环境影响评价参考和借鉴。  相似文献   

6.
介绍了无砟轨道用水泥基吸声板工程,并进行了现场测试。在距轨道中心线7.5m处,铺设吸声板后可以降低噪声2.8dB(A),在距轨道中心线30m处,铺设吸声板后可以降噪1.2dB(A)。吸声板在800—4000Hz各频带可降低0.7—6.4dB。结果表明:在铁路边界以内区域降噪效果显著,但在铁路边界以外作用有限。吸声板主要对800Hz以上的中高频噪声有一定的降噪效果。  相似文献   

7.
在广州——深圳间列车营运时速为160公里的准高速铁路上,要解决诸多现代技术问题。其中之一,就是噪声污染难题。据环保部门预测,广深铁路与居民住宅区最近距离只有10米远,产生的噪声在白天可增加6~8分贝,夜间增加10~11分贝,瞬间最大值可达到85分贝。准高速铁路带来严重的噪声污染,为此,铁道部极为重视和关注,在1992年提出准高速行车噪声、振动环境影响和治理措施研究课题,决定防治噪声污染与准高速铁路于1994年的建成同步进行。 准高速铁路噪声的大小与线路轨道结构、火车通过道岔和客车构造等关系十分密切。为了减少轮轨噪声污染,广深准高速铁路采用了一系列新技术、新工艺  相似文献   

8.
高速铁路无砟轨道区段所辐射的噪声通常要高于有砟轨道区段,常采用铺设吸音板的方法来降低轮轨噪声对周边环境的危害。吸音板的降噪效果除了与吸声材料特性有关外,还受表面结构形式的影响。本文通过选取无砟轨道吸音板不同的表面结构形式,利用边界元法及统计能量法,分别建立了边界元模型和统计能量模型,对比分析了吸音板吸声效果。研究结果表明:表面采用开槽结构的吸音板降噪效果最佳;统计能量法作为一种解决中高频复杂声振问题的能量方法,结合声学边界元法,能够准确、高效地预测各频带下的声辐射问题,这为铁路周边的声环境预示及对铁路降噪措施的预测评价提供了一个新思路。  相似文献   

9.
基于空气动力学理论建立了列车通过无砟轨道的数值模型,分析高速列车以不同速度通过无砟轨道时轨道板表面的空气压力,并与实测值进行了对比,验证了模型的可靠性。同时建立了列车-吸声板轨道空气动力计算模型,计算了吸声板的表面压力,积分得到列车引起的负风压对吸声板的向上的"吸力",并与其自身重量比较,进行安全性校核。研究结果表明:吸声板的铺设减小了列车底板与轨下结构之间的距离,导致吸声板表面空气压力较轨道板表面压力有所增大,且随着列车速度提高增幅加大;在本文算例中的吸声板设计条件下,列车速度达到385 km/h时,吸声板自重可以克服列车引起的负风压,并有一定安全余量。  相似文献   

10.
轨道交通陶粒混凝土吸声板降噪效果的测试分析   总被引:1,自引:0,他引:1  
创造低噪声的乘车环境,建立减振降噪环境友好型的地铁站区环境已成为轨道交通建设的发展趋势。测试分析一种陶粒混凝土制作的新型吸音结构HCM型吸声板的降噪效果。试验在北京交通大学轨道减振与振动控制实验室中进行,将吸声板铺设在轨道的钢轨之间,在道床和隧道壁上布置测点,模拟干燥、潮湿、下雨以及潮湿后干燥的工况进行试验测试。分析结果表明:不同测点和工况下,减噪效果都能达到4~5 d BA;频域分析表明,吸声板具有较宽的降噪频段。对于隧道壁测点,吸声板对250 Hz以上频段噪声的降噪效果较优;对于道床测点,吸声板对500 Hz以上频段噪声的降噪效果较好。  相似文献   

11.
研究目的:高速铁路高架桥结构噪声的根源是桥梁在列车荷载作用下产生的频率在20~200 Hz之间的局部振动,而结构噪声经研究从传播途径上控制效果较差,应选用较为精细的方法从其产生根源上着手加以研究。研究结论:基于车辆一轨道耦合动力学原理,利用有限元方法针对高速铁路中所采用的典型箱梁的局部振动问题作了详细的分析求解,选取了具有代表性的6个敏感点,分析了多种工况下的点振动响应,结果表明:(1)工程实际中在满足其他受力条件的前提下,通过改变箱梁顶板的厚度、腹板的厚度都会对控制箱梁局部振动起到可观的效果;(2)由改变腹板倾角分析可知,较小的倾角对结构局部振动具有一定的控制作用,但并不意味着一定要将其设置为0°来控制局部振动,需综合考虑其他因素,取最合适的腹板倾角;(3)该研究结果对高速铁路桥梁工程减振降噪设计具有指导意义。  相似文献   

12.
围绕有砟轨道在城市轨道交通地下线路中应用的可行性进行研究,结合国内外实践研究现状,从经济评价、环境评价、结构动力特性、铺设条件及养护维修等方面进行分析探讨,建立"列车-轨道结构-隧道"耦合动力学模型并分析其动力特性,最后对国内外有砟轨道的先进养护维修方法进行总结。分析表明:城市轨道交通地下线路铺设有砟轨道,在病害防治、经济效益、减振降噪等方面相对于无砟轨道具有一定优势,而在动力响应及养护维修等方面满足列车运营要求,在城市轨道交通地下线路铺设有砟轨道具有可行性。  相似文献   

13.
高速铁路隧道壁吸声材料降噪效果仿真分析   总被引:1,自引:1,他引:0  
应用SYSNOISE软件建立列车-隧道-隧道内壁吸音板结构的二维边界元模型,研究隧道内壁吸声结构不同铺设方案下的降噪效果。根据高速铁路列车通过时隧道内壁吸声结构不同铺设面积、铺设位置等因素,分析其对列车通过时噪声的降噪效果,并综合考虑工程经济性等因素,计算4个较为典型的隧道内壁吸声结构的铺设方案。计算结果表明:在隧道内壁全部铺设吸声材料的情况下,铺设隧道吸声结构对隧道内声压级的降噪效果约为14.3dB。随着隧道内壁吸声材料铺设面积的增加,隧道内的降噪效果越好。在计算选取的4个方案中,内壁整体铺设方案降噪效果最佳,内壁部分铺设方案降噪效果最差,两者的组合方案降噪效果适中,实际工程应用中应综合各方面因素对降噪方案进行选取。  相似文献   

14.
新干线高速试验列车FASTECH360S和FASTECH360Z采用安装吸声板来降低车体下部噪声。在仿真试验、模型试验和用现有商业运营列车进行的运行试验中,确认了这些吸声板的降噪效果。  相似文献   

15.
高速铁路轮轨噪声预测分析   总被引:20,自引:3,他引:17  
基于高速铁路轮轨噪声机理,对高速铁路轮轨滚动噪声预测方法进行分析。建立高速铁路轮轨噪声预测分析模型,为轮轨噪声的控制提供必要的依据。在探讨列车—轨道相互作用关系、轮轨表面粗糙度、轮轨接触滤波、噪声辐射比、轮轨系统噪声辐射、地面的声反射等问题的基础上,对我国快速客运专线的轮轨噪声进行了数值仿真预测。给出轮轨噪声的频谱特性、距离衰减特性及随运行速度的变化规律。  相似文献   

16.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

17.
分析聚合微粒吸声材料特性,采用阻抗管试验研究吸声板厚度、材料颗粒大小、空腔设置对吸声系数的影响规律,确定聚合微粒材料的关键参数,首次采用聚合微粒材料研发一种无砟轨道降噪吸声板并确定其几何尺寸、表面设计及强度设计。提出采用拱形空腔提高吸声板的承载力且拓展其吸声频段;通过配置纤维钢筋增强吸声板的安全冗余;通过材料与结构的综合设计使吸声板兼具微孔吸声、共振吸声和干涉消声功能,增强了吸声效果。混响室试验表明,吸声板降噪系数为1.0;实车试验结果表明,测试速度为60~170 km/h时距轨道中心线25 m处吸声板降噪4.0~4.4 dB(A),降噪效果显著。  相似文献   

18.
研究目的:声屏障作为控制铁路噪声最主要的方法之一,能够在传播路径上有效降低铁路噪声源的传播,但仍存在工程造价高、维保费用高、景观效果差等不足。本文根据现场测试结果,从列车声源分布及频谱特性着手,建立矮屏障实验室1∶5缩尺模型,开展矮屏障空间降噪效果研究,从而为矮屏障设计和研发提供测试依据。研究结论:(1)高速铁路主要声源可分为轮轨区域噪声、车体空气动力噪声和集电系统噪声,并以轮轨区域噪声为主;(2)矮屏障位于近轨时,轨面以上3. 5 m场点降噪效果为5. 0 dB(A);远轨时为3. 3 dB(A);在远轨基础上增加线间屏障,降噪效果可提高2. 2 dB(A),达到5. 5 dB(A);综合分析可知,矮屏障能够显著降低250~1 000 Hz频率噪声;(3)线间屏障可弥补矮屏障距离声源较远时的缺陷,可明显增加降噪效果,提高降噪效率,因而将矮屏障作为声屏障的一种补充措施,应用于铁路轨道建设中,可大大提高降噪效果,满足户外声学环境要求。  相似文献   

19.
轨道交通噪声影响乘客和沿线居民的身心健康,控制轨道交通噪声辐射是当前国家和行业关注的焦点问题之一。轮轨噪声是轨道交通噪声中非常重要的噪声源,是由轮轨表面粗糙度和表面不连续的几何缺陷等激扰产生的轮轨高频振动或曲线轨道产生的轮轨摩擦振动向空中辐射而产生的。研究轨道交通轮轨噪声的产生机理、激扰源和控制方法可促进轨道交通的技术创新与和谐发展,具有重要的理论意义和社会价值。对国内外轨道交通轮轨噪声的研究历史和现状进行综述,主要包括轮轨噪声产生机理、激扰源及控制技术等;并对比了国内和国外的研究状况,指出我国为适应高速铁路和城市轨道交通建设需在减振降噪理论和技术方面进一步重点研究的问题。  相似文献   

20.
为了研究不同形式减振轨道对降低地铁线路高架段环境噪声效果,以国内某地铁高架桥段周边环境噪声为研究对象,分别对列车以110 km/h通过该高架段2种不同轨道时诱发的噪声水平进行测试分析,然后改变原有评价方式,通过引入更符合人耳听觉的响度分析方式对噪声水平进行综合评价,并对比分析两种轨道形式的噪声水平,提出改进思路。结果表明:(1)相比DZⅢ-1型普通减振扣件轨道,GJ-Ⅲ型中等减振扣件轨道除在桥中央线测点处有一定降噪效果外,在其他测点处降噪效果并不明显;(2)通过响度分析发现,GJ-Ⅲ型中等减振扣件可能还会增大人耳对环境噪声的感知情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号