首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
阜阳市向阳路颍河大桥主桥为(47+148+47)m三跨下承式梁拱组合体系拱桥,采用支架法先梁后拱架设。采用2台超大型跨桥龙门吊进行上部钢结构拼装,可以有效控制超宽桥面的拼装线形:中跨支架预留2孔宽度达32.3 m的临时通航孔,既满足了施工需要,又保证了施工期间的正常通航;主墩墩顶区搭设胎架进行单元件现场散拼,有利于减少钢材的工作应力集中及提高拼装精度;中跨先拼装两侧钢纵梁并预留焊缝收缩量,保证了钢纵梁间大横隔板的安装栓孔重合度及桥面宽度;采用大节段拼装及三维空间坐标定位法,解决了空间曲面构造的X形风撑高空拼装的难题。  相似文献   

2.
本桥为通顺路上跨京承铁路立交工程。详细介绍了方案选择、构造布置、结构计算分析以及动力特性、稳定性分析等方面的内容。设计表明,单拱肋梁拱组合体系桥梁具有减小桥梁跨度、外形美观、结构合理、经济性能好等特点,且具有较好的稳定性和动力性能。  相似文献   

3.
针对阜阳市向阳路颍河大桥主桥的设计特点及施工要求,对三跨梁拱组合体系拱桥钢结构制造技术进行研究,阐述该组合体系拱桥的中跨正交异性钢桥面板、边跨单箱多室钢箱梁及矩形截面箱形拱圈制作的关键工艺流程,并对焊接质量控制及涂装质量控制进行详细叙述,通过合理的控制措施,有效地解决了焊缝变形、应力集中及涂装使用年限不达标等钢结构质量的突出问题。  相似文献   

4.
阜阳市向阳路颍河大桥主桥为三跨下承式梁拱组合体系钢结构拱桥。施工方案为先搭设梁部拼装支架及门式起重机轨道支架,然后安装跨桥门式起重机逐节段拼装钢构件直至全桥合龙。梁部拼装支架为墩梁式结构,主要由立柱、横梁、分配梁、贝雷梁、垫梁、防护结构等组成。受河道繁忙通航及下游75 m处既有京九铁路颍河特大桥孔跨布置的限制,跨越颍河主河道的中跨梁部拼装支架需预留2孔净宽为32.3 m的通航孔确保施工期间河道正常通航。利用Midas/Civil对各种工况下的支架主要结构进行静力学分析,计算结果表明支架主要结构应力及变形均满足规范要求。由于通航孔跨度大、支架上部贝雷梁组及钢构件荷载大,施工采用DZJ200型振动锤进行钢管桩插打,确保其承载力满足设计要求;采用临时浮式支架对通航孔上部三组贝雷梁组进行分段安装,贝雷梁组合龙就位后撤离临时浮式支架。实践证明该关键施工技术是可行的,保证了整个拼装支架的顺利施工。  相似文献   

5.
通过对某42m+64m+42m三跨预应力混凝土铁路连续梁桥的静、动载试验,从桥梁结构静动载作用下结构变位、应变、冲击系数以及纵横向振动特性、列车制动条件下结构受力等诸方面分析结构在荷载作用下的实际工作状态,确定结构的承载能力,并对设计理论的准确性和施工质量进行验证。  相似文献   

6.
以应用于客货共线铁路的32、40m跨度钢混组合结构简支梁和3×40、3×48m钢混组合结构连续梁为研究对象,分析了不同形式钢混组合结构桥梁的自振特性.以美国六级谱生成的轨道不平顺为激励源,对CRH2型列车通过时的车桥动力响应进行了数值模拟.研究结果表明:不同形式的钢混组合结构桥梁在CRH2列车作用下的车桥动力响应满足运...  相似文献   

7.
分析通行桥梁的随机行车车辆荷载特性,研究连续梁桥在随机行车荷载下桥梁动力响应,即振动加速度时程、振动位移时程、应变时程等及其最值与振动幅值。分析动力测点的布置方法以及相应仪器设备的选用。将桥梁动力测试结果用于桥梁性能评定,根据实测动力响应的各类量值来分析桥梁结构的动力受力性能。在性能评定中采用假设检验理论,根据相距一段时间前后2次的测试结果的对比分析用于评判桥梁结构是否发生损伤以及损伤的程度。并以广东佛开高速九江大桥为工程背景,介绍该桥在与之十分邻近且有临时构件连接的国道325九江大桥被船撞垮塌前后的2次动力测试结果,以及动力测试结果在桥梁评定中的具体应用。  相似文献   

8.
上饶丰溪大桥主桥是一座双索面斜塔斜拉—梁拱组合结构桥,为测试该桥的力学性能和工作状态,对该桥进行了现场的静动载试验,通过试验数据与建模计算对比分析,正确评定结构的工作性能。研究结论为:试验桥结构受力变形及内力分布规律与理论吻合,动载试验验证了结构在30 km/h以上车速的冲击系数超出限值,结构振动属小阻尼振动,桥梁结构整体竖向抗弯刚度和抗扭刚度符合设计要求,抗扭能力稍欠。  相似文献   

9.
梁拱组合体系的斜腹杆受力分析   总被引:1,自引:0,他引:1  
  相似文献   

10.
梁拱组合结构收缩、徐变效应的影响分析   总被引:1,自引:1,他引:1  
宜万铁路宜昌长江大桥主桥为130 m+2×275 m+130m连续刚构柔性拱组合结构,收缩、徐变对结构影响复杂,重点分析收缩、徐变对结构各部分的影响,并提出一些改善收缩、徐变对结构不利影响的措施。  相似文献   

11.
以宜万铁路宜昌长江大桥为工程背景,通过有限元计算,分析了钢管混凝土拱肋施工阶段主梁控制截面受力情况,还对目前国内三种主要钢管混凝土规程进行了比较分析。通过分析比较,发现在拱肋施工的各工况中,钢管拼装和吊杆张拉对结构的受力影响较大。对钢管混凝土梁拱组合结构的设计计算,宜采用把钢管转化为混凝土的理论计算,以其他的理论的计算作为参考,以期使结构设计更加合理。  相似文献   

12.
城市轨道交通桥梁车辆荷载动力系数测试与分析   总被引:1,自引:1,他引:1  
通过对国内外既有铁路桥规、车桥振动理论分析以及现场试验数据的对比,提出城市轨道交通桥梁车辆竖向荷载的动力系数建议公式。由于车速不同及机车性能不同,城市轨道交通桥梁的动力系数与铁路桥规不同。从现场试验及理论分析中均反映出轨道交通桥梁的动力系数比相应的铁路桥梁动力系数值小。  相似文献   

13.
某外倾式梁拱组合拱桥的拱、梁连接处原设计采用高强螺栓连接,由于某些原因在施工过程中变更为焊接连接。由于该拱脚连接部分受力复杂,且焊缝连接对结构受力以及运营维护提出了更高要求。为了解拱梁连接处应力分布,并为后期桥梁的运营维护提供理论依据,采用有限元建立该桥拱脚连接处的精细化有限元,并以实际施工过程中的监测结果进行验证,研究结果表明:采用板壳单元的精细化有限元拱脚模型能有效模拟拱脚局部应力分布特征,研究分析结果将为后期运营维护提供重要的参考。  相似文献   

14.
城市轨道交通桥梁动力性能试验与分析   总被引:2,自引:2,他引:0  
介绍了城市轨道交通桥梁的运营性能。通过对30m跨度预应力混凝土箱梁的动力试验成果分析,得出运营中的桥梁竖向挠度,切面应力分布以及跨中横向振动等桥梁动力特性。  相似文献   

15.
桥梁结构抗震动力分析理论与实践   总被引:2,自引:0,他引:2  
介绍了桥梁抗震动力分析的一些理论和方法,并给出应用于实际工程的计算结果。  相似文献   

16.
静风荷载对高墩大跨桥梁位移影响分析   总被引:1,自引:0,他引:1  
为了研究静风荷载对高墩大跨桥梁纵横向位移的影响,为高墩大跨桥梁上铺设无缝线路、无砟轨道提供理论依据,运用有限元软件ANSYS,建立桥梁—墩台—基础相互作用一体化模型,分析了静风荷载对桥梁纵向位移、横向位移的影响以及不同桥型对静风荷载抵抗能力的影响。结果表明,静风荷载作用下,高墩大跨桥梁会产生较大的纵横向位移;在最大风荷载作用下,横向位移产生的轨向不平顺值未超过高速铁路轨向不平顺管理值,且不会影响无缝线路的稳定性;静风荷载下引起梁体和墩台纵向位移会影响梁轨相互作用;采用刚构桥较连续梁桥有利于控制风荷载对桥梁变形的影响。  相似文献   

17.
针对某50 m跨曲线钢箱梁与60 m跨斜跨钢箱拱组合桥进行空间受力分析,并进行成桥的静载与动载试验.采用ANSYS程序建立全桥的空间有限元模型,并配合自编程序分析组合结构在设计荷载下的受力特征及拱、梁承载状况.根据桥跨结构的受力特性,对钢箱梁和钢箱拱的最不利弯矩截面进行静载试验,测试梁与拱的应力及位移,并进行拉索索力测试.静载试验结果表明,桥跨结构实际受力状况与计算模式相符较好;静载下钢箱梁、拱的实测应力相对较低;静载下几何位移基本小于计算值,说明实际桥跨结构安全储备很大.同时采用脉动法进行自振特性测试,并进行行车、跳车激振试验.动力试验表明,桥跨结构动力特性良好.  相似文献   

18.
研究目的:跨度超过200 m的无砟轨道桥梁,采用普通PC梁已不尽合理,而大跨钢结构桥梁对无砟轨道的适应性尚存在许多不明之处,且造价较高。因此,PC梁与钢结构相结合的组合结构桥梁,兼具二者优点,是一种切实可行的结构。组合结构一般有梁拱、梁索、梁桁组合,本文结合西延高铁王家河特大桥分别就三种组合结构在高铁无砟轨道中的适应性进行分析,从而为无砟轨道大跨度桥梁选型拓宽思路。研究结论:(1) 248 m梁拱、梁索、梁桁组合结构,均可满足高速铁路无砟轨道的要求;(2)对于主跨的混凝土徐变变形控制方面,梁拱组合结构效果最好;(3)部分斜拉桥增设背索对控制主梁变形效果显著;(4)本研究成果对PC组合结构在高速铁路大跨桥梁中的应用具有一定意义。  相似文献   

19.
为了评价宁东铁路的修建对下伏输水隧洞安全性的影响,对铁路移动荷载作用下隧洞岩基—衬砌结构予以静动力计算分析。研究结果表明,单线及多线荷载作用下岩基及衬砌结构的应力均低于相应的容许应力;移动荷载作用下岩基和隧洞衬砌质点的位移及速度振动曲线具有明显的三阶段特征,位移影响的深度范围随列车速度的增加而增加,而衰减完成的历时随着速度的增加而缩短。隧洞上方修建铁路不影响输水隧洞钢筋混凝土衬砌结构的安全,无需对隧洞进行加固处理。  相似文献   

20.
异地分布式桥梁结构远程协同拟动力试验   总被引:1,自引:0,他引:1  
为了解决现代工程结构日趋复杂化与单个实验室的规模及试验能力之间的矛盾,介绍了桥梁结构远程协同拟动力试验的基本原理、数值积分方法及应用程序的开发。针对目前结构试验中广泛使用的MTS系统,提出了2种不同的控制方法来实现试验程序与MTS控制系统的连接。利用网络化结构实验室系统NetSLab在美国南加州大学及中国3所高校之间进行了六跨桥梁结构的远程协同拟动力试验。试验结果表明:该系统可将异地分布的单一结构实验室通过互联网连接在一起,形成功能强大的网络结构实验室以进行大型桥梁结构系统的远程协同拟动力试验,从而提高综合试验能力,并达到资源共享的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号