首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合南宁地铁1号线火朝区间和朝新区间盾构隧道施工情况,对圆砾泥岩复合地层中土压平衡盾构掘进施工控制技术进行探讨。明确在此类地层中盾构掘进施工面临的问题,包括盾构掘进功效不佳、掘进面稳定性难以控制和施工对地表沉降及周边环境影响大,继而从掘进参数优化、渣土改良优化、壁后注浆优化、建筑物保护等方面提出土压平衡盾构穿越圆砾泥岩复合地层的成套掘进施工控制技术。  相似文献   

2.
以南宁地铁1号线一期工程的2个区间盾构隧道工点为背景,对圆砾泥岩复合地层中盾构隧道上下交叠施工的主要技术进行探讨。在此类地层中交叠隧道施工应采用下部隧道地层加固、临时支撑系统保护、上部盾构优化掘进控制的综合控制措施,为交叠段工程安全提供保障,降低施工风险,对南宁等地区类似地层中的交叠盾构隧道施工具有指导意义。  相似文献   

3.
中砂泥岩复合地层中的泥水盾构掘进面临堵仓、堵管的风险,对于控制沉降极为不利,尤其是近距离下穿既有成型隧道。以南宁地铁2号线火车站~明秀路区间(火明区间)泥水盾构下穿既有地铁1号线为背景,首先分析了中砂泥岩复合地层中盾构施工的风险,然后介绍了盾构穿越既有隧道前的加固措施,穿越前盾构机的开仓及检修工作,穿越过程中的掘进参数控制,最后介绍了采用基于自动化监测的沉降反馈控制体系。现场实测数据表明:泥水盾构在含泥岩地层中极易发生堵仓堵管,对于控制开挖面稳定十分不利,有计划的开仓清理对于穿越重大风险源是必要的;对既有成型隧道的加固是必不可少的措施,穿越过程中要以控制开挖面泥水压力为目标,降低推进速度;穿越过程中沉降信息的实时反馈是实现微扰动施工控制的关键,通过上述措施,既有1号线隧道最大沉降控制在-5.7 mm。  相似文献   

4.
以南宁地铁施工为依托,针对该地区的富水圆砾粉砂层级配颗粒大、渗透系数大的特点,对于盾构施工常见刀盘、刀具磨损较大、地表坍塌事故等情况下的圆砾粉细砂层泥水盾构掘进参数进行了研究。通过对工程地质的特殊性分析,试验段掘进参数的确定、优化及现场验证,取得了不同的土仓压力、泥浆密度、盾构推力大小和盾构掘进速度、控制每一环的出渣量、保证管片背后注浆的数量和压力大小等施工参数,有效地控制了地表沉降,延长了刀盘刀具的使用寿命,保证了盾构在该地层安全、顺利推进,取得了良好的施工效果。这对类似地层盾构施工具有指导意义。  相似文献   

5.
南京地铁3号线新庄站—鸡鸣寺站区间盾构沿线穿越复合地层时极易引发盾构过度磨损和掘进功效低下等不良后果。从盾构选型设计、盾构掘进关键参数控制和辅助控制措施等多方面开展研究,总结了满足该区间施工要求的掘进综合控制措施。研究结果表明,选用复合式盾构且根据掘进断面地层特性动态调整掘进模式和施工参数、优化浆液和改良剂配方的综合控制技术可以保障盾构安全穿越复合地层。  相似文献   

6.
泥水盾构机在圆砾、泥岩复合地层中掘进时,容易发生泥浆管、盾构机前仓进渣口堵塞(堵管堵仓)的现象,引起前仓压力波动,施工风险急剧增加。通过对盾构泥浆性能进行优化,降低堵管堵仓发生的概率;通过设定合理的前仓压力,优化掘进参数,保证开挖面的稳定,有效控制建筑物变形;之后选取正确的材料和施工工艺,利用同步注浆和二次补浆,有效控制地层和建筑物后续变形;同时利用信息化管理技术,采用自动化监测和信息化管理平台,使地下与地上联动,及时调整施工参数,更加有效地控制了建筑物沉降,为盾构机安全顺利下穿建筑物提供有力保障。  相似文献   

7.
针对厦门地铁轨道交通2号线海沧大道站-东渡路站区间采用泥水平衡盾构施工,在穿越变质砂岩夹泥岩地层时出现掘进效率低下、废浆量大、出渣不顺等问题进行研究,发现盾构掘进采用气压辅助模式,能有效降低刀盘转动扭矩,且渣土流动性得到改善,掘进效率大幅提高。本文探讨盾构在变质砂岩夹泥岩地层掘进过程中气压辅助模式切换方法、数据应用、掘进风险与处理措施,以期盾构在稳定性及气密性较好地层掘进施工中推广应用。  相似文献   

8.
盾构在高强度基岩突起的上软下硬地层中掘进时,面临换刀及带压进仓等风险。本文以广州地铁21号线中新站至中间风井盾构区间为工程背景,对盾构穿越片麻岩复合地层施工技术展开研究。深孔控制爆破是解决盾构在复杂地质条件下无法正常掘进的重要方法,尤其在地面环境复杂、周围建(构)筑物多、存在基岩凸起且伴有大量孤石的地层条件下更为有效。通过药包设计、安装及布孔方式、爆破安全距离控制等措施对基岩进行爆破预处理,最后对盾构机掘进参数进行优化调整,顺利完成盾构区间掘进任务,减少了盾构开仓风险。  相似文献   

9.
南宁地铁 3 号线青市区间越江隧道工程,盾构机在泥岩地层施工中存在刀盘结饼、渣土滞排等技术难题, 不仅降低盾构施工效率,更因渣土滞排导致江底段施工时易出现隧顶覆土击穿、盾尾密封失效等施工风险。通 过施工前对盾构机选型,针对泥岩地层段施工技术难题,对盾构机进行针对性设计、改造,在施工中控制及优 化掘进参数等,已有效缓解泥水盾构泥岩地层施工中刀盘结饼、渣土滞排等技术难题,提高泥水盾构泥岩地层 的施工效率,降低江底段泥水盾构的施工风险,对类似工程特别是泥水盾构江底浅埋段泥岩地层施工具有一定 的参考价值。  相似文献   

10.
南宁地区富水圆砾地层中新建隧道下穿既有隧道的相关研究目前较为匮乏.依托南宁地铁3号线金湖广场~琅西站区间盾构下穿既有1号线地铁隧道工程,对下穿区间段的盾构掘进参数进行研究.研究结果表明:3号线下穿既有1号线施工过程中部分掘进参数控制良好,既有1号线沉降控制在5 mm内;适当提高泥水仓压力能够降低既有隧道沉降的增速,同步注浆量和同步注浆压力的不足则会引起既有隧道沉降值增大;下穿施工时,掘进速度应控制在10~15 mm/min并应适当停机调整盾构机姿态,泥水仓压力应控制在0.2~0.22 MPa,预压值Pa应适量提高0.01~0.02 MPa,调整级差不应超过0.015 MPa,同步注浆量应控制在5~5.5 m3,后进行开挖或泥岩圆砾复合地层中应适量增加0.5~1 m3,同步注浆压力应控制在0.25~0.4 MPa,并根据地质情况优化注浆位置以保证注浆效果.  相似文献   

11.
针对盾构穿越上软下硬复合地层(软土层与岩层复合地层)地表沉降难以控制的问题,以福州地铁4号线工程为依托,通过理论分析加实践验证的方法研究了盾构在上软下硬地层中掘进时,土仓压力、掘进速度、顶推力和扭矩等典型施工参数对地表沉降的影响.结果表明:盾构穿越上软下硬地层的地表沉降中,瞬时沉降占总沉降比重较高,沉降控制更应着重于瞬...  相似文献   

12.
莞惠城际GZH-6标盾构隧道穿越地质多变的复合地层,掘进过程中遇到富水软弱地层、上软下硬、全坚硬岩、孤石、漂石、砂层等不良地层,施工难度大。隧道下穿大朗镇繁华老城区,线路上方建筑物覆盖率达90%以上,多为老龄浅基民居,安全风险高。掘进过程中通过采取建筑物及地层主动注浆及跟踪注浆、沉降监测、掘进参数优化、渣土改良、同步注浆及二次注浆控制、地质探测等多种技术实现盾构掘进过程中建筑物安全。  相似文献   

13.
结合成都地铁6号线施工情况,介绍了盾构法在成都复合(上软下硬)地层中初始掘进施工,优化盾构掘进参数,对预防管片破损和上浮提出合理化建议,指出盾构穿越建(构)筑物和管线区注意事项,为后续盾构正常掘进提供依据。  相似文献   

14.
详细阐述武汉三阳路长江隧道工程越江盾构在粉细砂、泥岩与砾岩复合地层中所碰到的掘进困难和刀具 磨损严重的难题,通过对掘进困难、刀具磨损严重的原因分析,主要从盾构掘进参数、刀具配置、泥饼消除与防 治等方面着手进行研究与实践,形成武汉三阳路长江隧道复合地层盾构施工关键技术措施,从而解决粉细砂、泥 岩与砾岩复合地层盾构施工的难题,同时也提出后续同类工程的改进方法。  相似文献   

15.
长沙地铁3号线越江隧道穿越湘江岩溶发育区,盾构施工风险高。针对沿线砾岩夹泥质砂岩复合地层、断裂破碎带和复杂岩溶地层等特殊地质条件,考虑水下高水压等因素影响,对地铁盾构选型进行研究。考虑不同施工风险,对盾构各关键部分进行设计与改进;对岩溶地层进行注浆预加固处理,分析泥水盾构对穿越复杂岩溶地层的适应性。采用改进的泥水盾构成功穿越湘江水下岩溶发育区,掘进效果良好,表明泥水盾构选型对穿越湘江水下岩溶发育区隧道的施工环境是合理且适应的。  相似文献   

16.
南宁地铁一号线土建五标盾构区间地层以圆砾为主,多次发生刀盘被困及螺旋输送机被卡的现象。在盾构机脱困过程中多次出现沉降过大,甚至产生塌方风险。为解决上述问题,经反复研究、实践,通过向盾构机土仓内添加一定比例的渣土改良溶液,起到增加渣土细颗粒,悬浮圆砾的作用,同时也可防止圆砾大量堆积在土仓内,造成刀盘被困或螺旋输送机被卡。配合渣土改良优化掘进控制技术,解决了盾构机在圆砾地层掘进过程中的诸多难题。  相似文献   

17.
以广州地铁复合地层土压平衡盾构施工的实践为基础,结合盾构穿越敏感建筑物的经验和教训,分析土压平衡盾构机在掘进施工管理中的特点,提出盾构掘进的指导原则,对类似施工环境中盾构机施工具有普遍的借鉴意义和指导作用.  相似文献   

18.
研究目的:针对北京地铁8号线天桥~永定门外区间右线隧道试验段1~160环掘进施工,结合地层条件分析掘进参数和地表变形间的关系,并对土压平衡盾构微扰动施工控制进行初步探索,以期为砂卵石地层盾构隧道的设计与施工提供借鉴和参考。研究结论:(1)相对于粉质黏土与砂卵石组成的复合地层,盾构施工在砂卵石地层引起的沉降更大,对地层的扰动也更大;(2)盾构在砂卵石地层中掘进时,按照太沙基松动土压力理论计算得到的开挖面支护压力更加贴合现场实际情况;(3)千斤顶推进速度与螺旋机转速对于调节开挖面支护压力至关重要;(4)盾构在砂卵石地层中掘进所需的推力和扭矩要高于粉质黏土与砂卵石组成的复合地层中的相应值;(5)由于砂卵石土孔隙率较大,故需要及时调整注浆压力以保证注浆量,从而控制地表沉降;(6)对于砂卵石地层中的盾构施工,通过合理控制盾构掘进参数,可以较好地减小地表沉降和地层损失。  相似文献   

19.
北京地铁九号线6标盾构隧道穿越地层部分为第三纪强风化~中等风化粘土岩、砾岩及卵砾、圆砾层,局部为粉质粘土、细砂层。在隧道范围内存在随机分布有大粒径卵石和漂石,漂石最大粒径可达1.2 m×1.5 m,卵石强度较大。区间隧道大部分处于潜水层中,且需穿越310 m宽的玉渊潭东湖。由于在强风化砾岩、卵石地层都存在大量卵石漂石,导致掘进困难。采用何种盾构机施工均存在较大风险和难度。根据北京地区的各种情况对盾构机选型问题进行探讨。  相似文献   

20.
以盾构穿越昆明市轨道交通5号线金海新区站—福保站区间软土地层为背景,通过建立三维数值计算模型,研究施工参数对盾构穿越软土地层变形控制的影响。研究结果表明:双线盾构隧道施工,在相同施工工艺情况下,地层变形不完全对称;先掘进隧道由于开挖卸载作用,对地层原始应力产生影响,最终会产生略大于后掘进隧道的变形;盾构在软土地层中掘进,土仓压力宜略大于土体掌子面压力,即采用盈压模式掘进;盾构施工过程中,宜采用早凝浆液,同时宜使用稠浆,避免后期浆液凝固失水收缩产生地层损失,或采取其他措施达到及时填充盾尾空隙且无后期收缩作用的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号