首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
64 m简支梁桥铺设无缝线路墩顶纵向水平线刚度研究   总被引:5,自引:2,他引:3  
针对桥上无缝线路纵向力的传递特点,运用线桥墩一体化计算分析模型,对64 m简支梁桥上无缝线路纵向力及梁轨的快速相对位移进行计算分析,提出了墩顶纵向水平线刚度的最小值,以指导大跨度简支梁桥上无缝线路设计。  相似文献   

2.
桥墩温差荷载引起的桥上无缝线路钢轨附加力   总被引:5,自引:0,他引:5  
采用单位荷载法计算桥墩温差荷载引起的墩顶纵向位移。根据梁轨相互作用原理,建立“轨—梁—墩”有限元模型,计算桥墩温差引起的桥上无缝线路钢轨附加力,研究桥墩温差引起的钢轨附加力的分布规律及其影响因素。研究表明:多跨简支梁桥墩温差引起的钢轨附加力的最大压力出现在右桥台处,最大拉力出现在靠近左桥台的边墩处,离桥台越远,钢轨附加力越小;随着墩高的增加,桥墩温差引起的钢轨附加力增大,建议在设计高墩桥上无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力叠加检算钢轨强度和无缝线路稳定性;桥墩温差引起的钢轨附加力,随着桥墩纵向水平线刚度的增加先快速增大,到一定程度后变缓;桥梁跨度对桥墩温差引起的钢轨附加力影响很小;钢轨附加力随着简支梁跨数的增加而增大,但逐渐变缓,当简支梁跨数超过18跨以后,钢轨附加力不再增长。  相似文献   

3.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

4.
研究目的:桥墩纵向刚度合理限值是铁路桥梁设计和轨道设计的关键参数,本文考虑桥上板式无砟轨道多层结构间的非线性相互作用关系,建立简支梁桥-无砟轨道-无缝线路空间耦合模型,分析桥墩纵向刚度对不同跨度简支梁桥上无砟轨道无缝线路纵向力学特性的影响,提出不同跨度简支梁桥的桥墩纵向刚度合理限值。研究结论:(1)简支梁跨度L≤64 m时,桥墩纵向刚度的控制指标为梁轨相对位移值;跨度超过64 m后,钢轨强度成为桥墩纵向刚度的控制指标;(2)铺设常阻力扣件时,32 m、48 m、64 m、80 m和96 m简支梁桥墩纵向刚度限值分别为210 k N/cm、500 k N/cm、700 k N/cm、1 500 k N/cm和2 000 k N/cm;(3)综合考虑结构安全性和工程经济性,对于80 m和96 m简支梁桥,可通过全桥铺设小阻力扣件来大幅度降低桥墩纵向刚度;(4)本研究成果可用于指导无砟轨道简支梁桥的桥墩设计。  相似文献   

5.
为研究简支梁桥上嵌入式轨道无缝线路钢轨伸缩变形和受力的分布规律,基于梁轨相互作用推导其伸缩变形和受力的解析算法,求解钢轨纵向位移、梁轨相对位移及钢轨伸缩力,分析梁体温度变化、纵向刚度比、桥墩纵向刚度以及桥梁跨数对嵌入式轨道结构伸缩变形和受力的影响。研究结果表明:解析算法求解结果与有限元分析结果吻合良好;梁体温度变化对嵌入式轨道结构的变形和受力影响显著,而纵向刚度比、桥墩纵向刚度和桥梁跨数的影响较小;梁轨相对位移极值可作为简支梁上嵌入式轨道无缝线路的设计限值指标。  相似文献   

6.
基于有限元方法建立桥上无缝线路单层弹簧阻力模型,研究了刚构桥及相邻简支梁桥桥墩纵向水平刚度匹配关系对梁轨相对位移的影响。采用铁路上常用的3种跨度刚构桥进行对比计算分析,结果表明,在刚构桥全桥制动时,刚构桥桥墩纵向水平刚度在一个范围内,梁轨相对位移随着刚构桥相邻两侧简支梁桥桥墩纵向水平刚度的增加先降低后增加;小于该范围时,梁轨相对位移随着简支梁桥桥墩刚度的减小而减小;而大于该范围时,梁轨相对位移变化规律与小于该范围的规律相反;并且该刚度范围随着刚构桥总长度的增加而增大。对于60 m+100 m+60 m的刚构桥,上述范围为1 1001 400 kN//(cm·双线);当刚构桥桥墩刚度取定为1 100 kN/(cm·双线),简支梁刚度从800 kN/(cm·双线)降低到400 kN/(cm·双线)时,附加伸缩力降低,梁轨相对位移先降低后增加,采用归一化方法处理数据,得出最优刚度取值为455 kN/(cm·双线)。  相似文献   

7.
桥墩温差荷载作用下桥上无缝线路钢轨附加力研究   总被引:3,自引:1,他引:2  
根据梁轨相互作用原理,建立了"轨-梁-墩-体化"有限元模型,采用单位荷载法计算了桥墩温差荷载引起的墩顶纵向位移,计算了桥墩温差引起的桥上无缝线路钢轨附加力.桥墩高度对桥墩温差引起的钢轨附加力影响比较敏感,当桥墩较高时,桥墩温差引起的钢轨附加力不能忽略,建议在高墩桥上设计无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力进行荷载组合,检算钢轨强度和无缝线路稳定性.  相似文献   

8.
基于梁轨相互作用原理,通过改变连续刚构桥墩的刚度值,计算不同桥墩刚度对钢轨伸缩附加力、梁轨快速相对位移和墩顶位移的影响。分析可得:有砟轨道结构中,刚构墩刚度取值的大小对梁轨快速相对位移影响最明显,在温度跨度较大的连续刚构桥中,应考虑到桥墩刚度对梁轨快速相对位移的影响。对于(64+4×116+64)m和(72+3×116+72)m刚构桥,桥墩刚度不宜小于750 kN/cm/线。对桥梁结构进行优化设计时,梁跨应尽可能对称布置,以降低桥墩刚度对钢轨纵向附加力的影响。  相似文献   

9.
结合几内亚Simandou重载铁路项目,建立有砟轨道单线简支梁线桥模型,分析40 t轴重列车作用下线路纵向位移阻力曲线变化对重载铁路无缝线路纵向力的影响。研究结果表明:当墩顶线刚度较小时,钢轨制动附加应力随纵向阻力的增大而增大,随屈服位移的增大而减小;梁轨快速位移差随纵向阻力的增大而减小,随屈服位移的增大而增大;纵向阻力变化对桥上无缝线路纵向力的影响大于屈服位移变化对纵向力的影响。  相似文献   

10.
桥墩纵向水平线刚度对桥上无缝线路设计的影响   总被引:4,自引:0,他引:4  
桥墩纵向水平线刚度是桥梁和无缝线路设计的关键技术参数,桥上无缝线路钢轨与墩台纵向力的分配以及梁、轨位移的大小很大程度上取决于桥墩纵向水平线刚度。结合工程实际,以客运专线常见的60 m 100 m 60m连续梁为例,分析桥墩纵向线刚度对钢轨、墩台纵向力及梁、轨位移的影响规律。  相似文献   

11.
为研究重载铁路非等跨简支梁桥上无缝线路纵向力的分布规律,建立6-32 m+40 m+6-32 m(30 t轴重)重载铁路简支T梁与轨道相互作用有限元模型,与13-32 m简支梁桥相对比,研究温度、竖向活载、列车制动及地震作用下系统的受力和变形特征,探讨非等跨简支梁(40 m简支梁)对系统的影响规律。研究表明,各类荷载作用下,钢轨应力峰值多集中在各简支梁相接处及跨中位置;地震作用下,钢轨和墩底承受着极大的纵向力;非等跨简支梁桥对伸缩力和挠曲力影响较大,将使钢轨伸缩拉应力增大70%、钢轨挠曲应力增大50%、部分桥墩墩顶挠曲力增大50%;非等跨简支梁桥对制动力和地震力影响较小。  相似文献   

12.
研究目的:利用国外某重载铁路荷载及参数,建立线-桥-墩纵向耦合无缝线路模型,计算分析40 t轴重重载铁路桥上无缝线路纵向附加力,掌握各设计参数对钢轨纵向附加力的影响,区别于常规铁路或客运专线无缝线路,以利于开展重载铁路的设计。研究结论:为确保40 t轴重重载铁路安全,应采用大断面高强度钢轨。在梁轨快速相对位移不大于4 mm的控制条件下,40 t轴重重载铁路桥梁合理跨度不宜超过40 m,其桥墩纵向线刚度最小限值大于《高速铁路设计规范》取值,桥墩刚度宜根据计算控制合理的纵向线刚度,钢轨和桥墩共同分配承担制动力。  相似文献   

13.
墩顶纵向刚度是高速铁路桥上无缝线路设计的关键参数,也是影响跨海大桥经济性的重要因素。为研究长联跨海引桥墩顶纵向刚度合理取值,以某高速铁路长联跨海引桥为研究对象,基于梁轨相互作用理论,针对长联跨海引桥的特点,通过建立线-桥-墩一体化有限元模型进行计算研究,提出不同桥跨设计方案的墩顶纵向刚度建议值。主要研究结论如下:(1)作为长联跨海引桥无缝线路的重要参数,墩顶纵向刚度对无缝线路制动力、梁轨相对位移具有明显控制作用;(2)跨海引桥采用简支梁方案时,32,48,64 m混凝土简支梁的墩顶刚度应大于200 kN/cm, 80 m混凝土简支梁、96 m及112 m钢桁简支梁的墩顶刚度宜大于400,500,600 kN/cm;(3)跨海引桥采用3×80 m连续梁方案时,对于单固定墩连续梁、刚构桥、连续刚构桥3种方案,墩顶刚度限值宜取2 150,500 kN/cm和510 kN/cm(中间支座),240 kN/cm(梁端支座)。  相似文献   

14.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

15.
在高墩大跨桥梁中,由于夏季太阳辐射作用混凝土结构会出现膨胀,桥墩整体升温会导致墩顶竖向位移增加,从而引起桥上无缝线路纵向附加力和钢轨竖向位移。为研究桥墩整体升温对无砟轨道中轨道部件受力和变形的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,分析高墩大跨桥墩升温条件下桥上无砟轨道无缝线路的受力以及平顺性。计算结果表明:桥墩整体升温对钢轨的纵向力、梁轨相对位移、凸台树脂变形和凸台受力的影响均很小,在无缝线路设计和检算时可以不考虑其对钢轨强度的影响,但会引起线路竖向不平顺,且主要是长波不平顺。  相似文献   

16.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

17.
中小跨度长联连续梁桥桥上无缝线路纵向力的研究   总被引:4,自引:1,他引:3  
针对固定墩组和拉压连接器两种桥梁结构,分析计算长联连续梁桥无缝线路纵向力。根据桥梁、钢轨的相互作用关系,建立纵向力计算模型,应用该模型,分析比较了桥梁联长、桥墩刚度以及轮轨粘着系数对纵向力的影响。根据附加纵向力的大小以及长钢轨伸缩位移量,提出了长联连续梁的最大联长,在连续梁中间设置钢轨伸缩调节器时,固定墩组桥梁体系连续梁联长应小于500m~600m,拉压连接器桥梁体系连续梁联长应小于1000m~1200m。研究结果表明,桥上无缝线路长钢轨的附加纵向力与桥墩的刚度有关,刚度减小,长钢轨的附加纵向力增加,对桥上无缝线路的强度和稳定性不利,根据长钢轨附加制动力的大小,提出了不同联长的连续梁桥墩刚度的最小限值。  相似文献   

18.
广珠城际简支梁墩顶纵向水平线刚度限值研究   总被引:1,自引:0,他引:1  
桥上无缝线路设计是跨区间无缝线路设计的重要组成部分,在桥上铺设无缝线路必须进行梁轨相互作用分析,并对桥梁和轨道结构进行检算。桥上无缝线路钢轨、墩台的纵向力及位移的分布很大程度上取决于桥梁墩台纵向水平线刚度。针对广珠城际铁路的活载类型、轨道结构类型等具体情况,根据桥墩纵向水平线刚度的控制条件,对常见跨度的简支梁桥墩纵向水平线刚度的限值进行了分析计算。  相似文献   

19.
研究目的:基于有限元方法与梁轨相互作用原理,建立能够分析坡道上无砟轨道桥梁变形对扣件受力影响的平面模型,分析桥梁坡度、墩顶纵向水平位移等因素对扣件受力的影响,提出在考虑桥梁收缩徐变、基础沉降、桥墩纵向温差及列车荷载等条件下32 m简支梁适应的坡度,从而为桥梁坡度选择提供理论指导。研究结论:(1)桥梁坡度以及墩顶纵向水平位移的改变均会引起扣件受力,并且扣件所受上拔力最大值随着桥梁坡度、墩顶纵向水平位移的增加近似呈线性增大;(2)对于梁端悬出0.55 m的32 m简支梁而言,当桥墩高度为20 m时,由扣件上拔力不超限确定的最大坡度值为29‰,当桥墩高度为40 m时最大坡度值为20‰;(3)当桥墩纵向水平刚度增加、梁缝附近铺设过渡板或采用特殊扣件时,可以适当增加桥梁的坡度限值;(4)基于扣件受力确定的桥梁坡度限值可为今后线路选线设计及桥梁坡度设置提供借鉴和参考。  相似文献   

20.
桥墩温度梯度对高墩大跨桥上无砟轨道影响研究   总被引:3,自引:3,他引:0  
由于太阳光的辐射,桥墩的向阳和背阳侧就会存在温差,当桥墩高度较大时,墩顶就会产生较大的纵横向位移,带动梁体、轨道板、钢轨偏移,产生桥上无缝线路附加力。为了研究桥墩纵向温度梯度作用下对无砟轨道中轨道部件的受力和变形的影响,基于梁轨相互作用原理,利用有限元方法,建立线-桥-墩一体化模型,计算结果表明:仅考虑桥墩纵向温度梯度荷载时钢轨会产生较大的附加力,且随着桥墩刚度的增加,钢轨附加力也会增加。当同时考虑梁体升温和纵向温度梯度时产生的钢轨附加力小于两者单独作用产生的附加力。无论是仅考虑桥墩纵向温度梯度,还是同时考虑梁体温升和温度梯度,凸台受力和树脂变形均不会发生较大变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号