首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对劲性骨架混凝土拱桥主拱圈常用的箱型截面,总结归纳主拱圈混凝土主要分环和浇筑方式及其影响因素,提出分环和浇筑的基本原则,并采用有限元法模拟分析分环浇筑方式对单箱三室截面劲性骨架混凝土拱桥内力与变形的影响。结果表明:箱形截面能较好地满足劲性骨架拱桥主拱圈受力和构造的要求,是大跨度桥梁的理想截面形式;主拱圈混凝土分环和浇筑方式主要由劲性骨架结构承载能力、施工操作性、结构整体性和经济性4个因素决定;进行分环和浇筑应遵循的基本原则包括减少分环数量,对称分环和浇筑,尽快完全包裹劲性骨架弦管,尽快形成完整箱室以及将截面复杂部分划分至易于施工混凝土环内等;跨径416 m劲性骨架拱桥的三室箱形截面主拱圈采用合理的分环和浇筑方式,可以分别降低5.9%的劲性骨架钢管应力和16.8%的管内混凝土应力,减少7.8%的拱顶下挠位移。  相似文献   

2.
大瑞铁路澜沧江特大桥主桥为342 m上承式劲性骨架钢筋混凝土拱桥,主要介绍了该拱桥拱肋的设计和施工过程,选取板梁单元模型的参数,对拱肋施工过程进行模拟,通过计算表明拱肋具有良好的受力性能,可为同类桥梁提供借鉴。  相似文献   

3.
王小飞 《铁道建筑》2020,(5):11-14,29
为保证一座新建铁路主跨337 m上承式劲性骨架混凝土拱桥主拱圈外包混凝土安全顺利施工,采用MIDAS/Civil建立施工阶段三维有限元模型,分析了不同纵向分段、横向分环浇筑方案对劲性骨架受力及挠度的影响.研究结果表明:采用多工作面浇筑可显著降低拱脚应力,改善主拱变形,但增加工作面对拱顶受力有利也有弊;增加截面横向分环可有效降低结构应力;综合考虑外包混凝土浇筑过程中的结构应力、变形、建设工期和大型临时设施的成本,采用三环六面法浇筑外包混凝土方案.  相似文献   

4.
悬臂浇筑与劲性骨架组合施工法是一种新型的钢筋混凝土拱桥施工方法,相较于悬臂浇筑施工,不仅可以缩短拱圈悬臂浇筑段的长度,减轻悬臂的质量,降低对扣锚系统的要求,而且能够尽快形成拱结构,从而减少施工风险,缩短工期,提高钢筋混凝土拱桥的经济性。从主拱圈自身受力特点、扣索力的利用效率、施工过程最大扣索力、拱圈拉应力等几个方面分析了悬臂浇筑与劲性骨架组合法中劲性骨架段合理长度的选取。结果表明劲性骨架段长度取跨度的0. 38~0. 54倍最为合理。  相似文献   

5.
悬臂浇筑与劲性骨架组合施工法是一种新型的钢筋混凝土拱桥施工方法。相对于悬臂浇筑施工,该方法不仅可以缩短拱圈悬臂浇筑段的长度,减少悬臂的质量,降低对扣锚系统的要求,而且能够尽快形成拱结构,从而减少施工风险,缩短工期,提高钢筋混凝土拱桥的经济性,特别适用于200~400 m跨径的拱桥。用组合单元法计算了H型钢劲性骨架和钢管混凝土劲性骨架拱圈截面的刚度,建立有限元模型分析了不同劲性骨架长度对拱顶竖向位移的影响。结果表明:H型钢劲性骨架和钢管混凝土劲性骨架对拱圈截面拉压刚度增幅约为5. 66%,竖向抗弯刚度增幅约为6. 54%,且H型钢劲性骨架增幅稍大于钢管混凝土劲性骨架;劲性骨架长度在70~130 m时,拱圈刚度几乎不随劲性骨架长度变化而变化。综合各种因素得出悬臂浇筑与劲性骨架组合施工法的劲性骨架长度在跨径的0. 33~0. 62倍之间是较为合适的。  相似文献   

6.
为了探讨大跨度劲性骨架混凝土拱桥拱圈外包混凝土的合理浇筑方法,针对目前常采用的平衡浇筑与连续浇筑两类方法,以主跨为340 m的郑万高铁梅溪河大桥为研究背景,首先,依托劲性钢骨架的扣索系统,提出采用敏感性分析确定拉索合理位置及索力张拉大小的新方法;其次,采用Midas Civil软件建立主拱圈梁-板组合分析模型,并对分段平衡浇筑和连续浇筑法的结果进行探讨;最后,进一步分析不同工作面数量对于拱桥结构应力、挠度和稳定性的影响。研究结果表明:利用敏感性分析结果,平衡加载法和连续浇筑法均能够有效控制主拱圈截面应力和变形大小;当纵向工作面数量相同时,平衡浇筑法更有利于拱桥施工阶段的稳定性。研究成果可为大跨度混凝土拱桥的修建提供技术支撑。  相似文献   

7.
南盘江特大桥是云桂铁路全线的重难点控制性工程,也是世界客货共线铁路中斜拉扣挂+分环分段组合法模筑拱圈混凝土最大跨度的劲性骨架外包混凝土拱桥,施工难度位居世界同类桥梁前列,其主桥为单跨416 m上承式劲性骨架外包混凝土拱桥.根据施工全过程中实际发生的各项影响桥梁应力、索力与变形的参数,结合施工过程中监测的各阶段应力、索力与变形数据,及时分析与理论计算预测值的差异并找出原因,提出修正对策,确保全桥建成以后桥梁的应力状态和外形曲线与设计达到最佳吻合.为后续同类桥梁劲性骨架安装和拱圈外包混凝土保质量、保安全、快速、高效施工提供参考.  相似文献   

8.
分析了劲性骨架法施工的大跨度混凝土拱桥,由于拱圈截面是逐步分环外包混凝土形成的,其截面应力分布不均现象突出,作者提出在施工过程中分环调整拱环应力,其作用是改善结构性能,充分发挥材料特性。  相似文献   

9.
研究目的:通过某逆作法车站的粱柱节点内力和变形特性进行分析(包括考虑各种工况的结构平面分析和三维分析,节点的分析和设计等),解决设计中的一些关键问题,并结合施工过程中结构变形和受力的实测数据,反馈和调整设计和施工工艺,保证工程设计和施工工作的顺利完成。研究结论:针对钢管混凝土柱和钢筋混凝土梁板结构节点的设计和施工,提出一种钢环板牛腿-钢筋混凝土环梁的组合结构形式,这种结构形式,利用钢环板牛腿承受剪力,利用钢筋混凝土环梁承受弯矩,受力明确,施工方便,且可在工厂加工,质量可靠。大大节省了节点施工的造价和时间成本。  相似文献   

10.
研究目的:劲性骨架拱桥以其刚度大、跨越能力强和能较好地适应山区峡谷地形等优势逐渐成为山区铁路大跨桥梁的一种主选结构形式。但是,采用该方法施工的拱肋需要经历一系列的体系转换,受力非常复杂,往往控制设计。本文以沪昆高铁北盘江特大桥为例,系统介绍劲性骨架混凝土拱桥在施工过程中的计算方法及主要影响因素,研究拱肋在施工过程中的受力状态及控制因素,分别从横向分环和纵向分段两个方面对比分析多种外包混凝土施工方案,以期为类似拱桥的设计提供参考和依据。研究结论:(1)随着截面横向分环数的增加,骨架的受力将明显降低,表明分环数量的多少直接影响着拱桥的受力,要保证分环数量不宜过少;(2)纵向分段数量并不是越多越好,尤其是工作面交界处未包混凝土的弦杆处于较不利状态;(3)本次提出的优化方案有利于降低拱顶上弦的最大应力,避免了工作面处的应力突变,保证整体受力均匀,达到了工序优化的目的。  相似文献   

11.
新建瓮马铁路乌江特大桥跨越两山之间深谷,地形复杂、设计难度大。为研究该桥梁方案,首先阐述了主桥的方案构思和结构设计,然后通过空间有限元软件对本桥进行静、动力仿真分析,总结了大跨铁路劲性骨架混凝土拱桥构造和受力特性。结果表明:主跨337 m上承式劲性骨架混凝土拱桥具有刚度大、徐变小、后期养护维修工作量小等优点,主拱圈采用小矢跨比设计,兼顾安全、经济、环保和美观,能够满足铁路桥梁跨越山区“V”形峡谷的要求;主拱圈由劲性钢管混凝土骨架外包C55无收缩混凝土构成,通过分层分段浇筑方案改善拱圈各构件的内力;拱上结合梁采用两片工字形钢与混凝土桥面板相结合的形式,钢梁栓焊结合,便于制造、运输和施工;拱座采用梯形断面扩大基础,基础开挖永临结合,有效降低施工风险;数值分析表明该桥结构的刚度、强度、稳定性均能满足规范要求,能够满足客货共线铁路的安全性和乘坐舒适性要求。可为其他山区铁路桥梁桥式研究提供参考。  相似文献   

12.
为探讨大跨度劲性骨架拱桥主拱圈的非线性稳定性能,以云桂铁路南盘江特大桥为工程背景,运用西南交通大学自主研发的LSB软件建立主拱圈有限元模型,考虑几何与材料非线性的影响,计算施工全过程共46个工况下的结构非线性稳定系数,并评估主拱圈在施工过程中的变化趋势。结果表明:钢管骨架拼装阶段主拱圈非线性稳定系数在2.2~26.3,拼装与拱顶合龙段相邻的19#节段时非线性稳定系数为2.2,钢管骨架合龙时非线性稳定系数为3.9;灌注钢管内混凝土阶段主拱圈非线性稳定系数在2.6~3.8,灌注下弦外侧钢管内混凝土时非线性稳定系数为2.6,随着钢管内混凝土逐渐达到其设计强度,非线性稳定系数保持相对稳定;浇筑外包混凝土阶段非线性稳定系数在2.1~4.6,浇筑边箱底板第3,6,9段外包混凝土时非线性稳定系数为2.1,是施工全过程主拱圈非线性稳定系数的最小值;施工全过程主拱圈失稳形态以面内失稳为主,其非线性稳定系数均大于安全临界值2.0,非线性稳定性能满足要求。  相似文献   

13.
为了准确模拟钢筋混凝土箱梁的非线性受力性能,采用精细化的三维纤维梁单元模型,基于有限元软件ABAQUS的Standard求解模块,用FORTRAN语言编制了钢筋和混凝土纤维梁单元材料用户子程序,详细介绍了建模过程。以钢筋混凝土简支箱梁为算例,对其进行全过程非线性仿真分析,并与试验结果进行对比,研究配筋率及加载方式对箱梁全过程受力性能的影响。计算结果表明:有限元分析得到的跨中荷载-挠度曲线反映了钢筋混凝土箱梁的受力全过程及破坏形态,且与试验结果吻合良好,验证了本文建模方法的可靠性;配筋率对箱梁的极限承载力影响很大,选择合适的纵筋和箍筋配筋率极为重要;不同加载方式下箱梁的受力性能是有差别的。提出了箱梁全过程受力特性的弯矩-挠度简化计算模型,并与试验结果对比,验证了本文简化计算方法的正确性,为既有桥梁的安全性和可靠度评估提供了简化方法。  相似文献   

14.
为研究上承式钢筋混凝土拱桥构造对结构受力的影响,利用有限元方法分析某无砟轨道上承式钢筋混凝土拱桥拱肋厚度及腹拱跨度对结构受力的影响。通过计算分析得出采用增加拱肋厚度、减小腹拱跨度的方式,能有效改善局部受力,降低腹拱墩范围的应力水平使结构受力更为合理的结论。  相似文献   

15.
缪庆华 《铁道勘察》2023,(5):119-124
新成昆铁路老鼻山隧道掌子面施工揭示溶洞,存在洞顶掉块、溶洞水倒灌等风险,需采用合适的跨越方案。采用调查分析方法对溶洞类型进行判定,提出“拱桥+护桥”结构跨越溶洞方案,并进行了结构设计。为了支撑该拱桥与护桥结构的工程设计,采用有限元方法,建立桥梁结构的三维空间仿真分析模型,针对施工阶段和成桥阶段,从变形、受力等角度系统分析了拱桥主拱圈的静力性能,并讨论受力最不利截面的强度和裂缝情况。研究表明,溶洞内水源补给主要为基岩裂隙水,溶洞整体稳定;在施工阶段,主拱圈最大压应力和最大拉应力分别为5.94 MPa和2.74 MPa,出现在主拱圈拱脚的下缘和上缘位置;在成桥阶段,跨中拱顶和拱脚是不同荷载组合下的最不利截面,混凝土和钢筋的最大正应力分别为11.88 MPa和189.07 MPa,裂缝最大宽度为0.19 mm,应力和裂缝均满足相关规范要求。  相似文献   

16.
针对大跨度劲性骨架拱桥施工阶段受力复杂、外包混凝土浇筑方案对劲性骨架受力影响较大的特点,提出基于最优化理论的外包混凝土分环分段数量设置方法。将主弦管应力与目标应力差值的平方设为目标函数,分环分段数量为设计变量,利用最优化原理建立外包混凝土分环分段浇筑状态下,可测变量之间的性态约束关系。以某在建主跨600 m的上承式钢管混凝土劲性骨架拱桥为例,通过最优化原理求取外包混凝土分环分段数量设置的最优解,并进一步对肋间横联结构及混凝土浇筑顺序进行优化计算。结果表明:提出的基于最优化计算理论的外包混凝土分环分段设计方法是可行的;原设计方案主弦管压应力为342.6 MPa,优化后主弦管压应力仅为309.1 MPa,降低幅度可达9.8%;原设计方案拱顶最大下挠值为654 mm,优化后拱顶最大下挠值仅为629 mm,下挠值减少25 mm;肋间横联设计方面,建议采用X形空间横联而非采用I形平面横联,因前者在外包混凝土浇筑阶段的稳定性明显优于后者。  相似文献   

17.
研究目的:以青岛海湾大桥高桩承台施工为背景,利用通用有限元分析软件对钢筋混凝土套箱围堰进行受力分析,通过接近实际工作状态的有限元仿真分析,对单元类型的选择及钢筋混凝土整体式建模提供依据,来达到最大限度的减少结构尺寸和吊装重量,使施工工艺得以最大限度的优化.研究结论:通过采用solid 65单元对钢筋混凝土套箱围堰进行的仿真受力分析,可以有效地解决钢筋混凝土复合材料的单元自由度耦合,很好地模拟钢筋混凝土套箱几何尺寸、空间位置、连接条件、边界条件和空间受力状态,为结构优化提供高精度的数值模型,提高计算精度,指导施工.  相似文献   

18.
拱圈结构方案和吊装工艺的精确控制是实现大跨度钢筋混凝土拱桥的核心内容。本文以湖南张花高速连接线上牛路河特大桥为例,分析跨深谷钢筋混凝土预制拼装拱桥主拱圈如何合理的横向分箱、纵向分段及配套吊装施工工艺,通过计算比对优化原有设计及施工方案,达到提高施工安全、简化施工步骤、加快施工进度的目的。  相似文献   

19.
研究目的:以青岛海湾大桥高桩承台施工为背景,利用通用有限元分析软件对钢筋混凝土套箱围堰进行受力分析,通过接近实际工作状态的有限元仿真分析,对单元类型的选择及钢筋混凝土整体式建模提供依据,来达到最大限度的减少结构尺寸和吊装重量,使施工工艺得以最大限度的优化。研究结论:通过采用solid65单元对钢筋混凝土套箱围堰进行的仿真受力分析,可以有效地解决钢筋混凝土复合材料的单元自由度耦合,很好地模拟钢筋混凝土套箱几何尺寸、空间位置、连接条件、边界条件和空间受力状态,为结构优化提供高精度的数值模型,提高计算精度,指导施工。  相似文献   

20.
主拱圈混凝土浇筑是建造600 m跨径钢管混凝土劲性骨架铁路拱桥的关键环节,为此提出某600 m跨径钢管混凝土劲性骨架拱桥的主拱圈混凝土浇筑方案,具体为:采用四工作面法,主拱圈截面分为6环,并设1组斜拉扣索辅助调载,适当调整1环混凝土在各工作面上的浇筑顺序和节段长度。采用有限元法对施工全过程进行模拟分析,验证该方案可行性。结果表明:在主拱圈拱脚和控制性截面应力过程线峰值处分别设置工作面,且首先在第二工作面上浇筑一定长度的混凝土节段,再同时浇筑第一、第二工作面混凝土节段,可有效降低浇筑过程中结构的瞬时应力;通过在主拱圈拱脚附近设置斜拉扣索并适时调整索力作为辅助调载措施,可达到调整拱脚截面应力和保持拱轴线合理下挠的目的;通过合理设置工作面和辅助措施,适当确定混凝土浇筑顺序和节段长度,可保证主拱圈外包混凝土浇筑期间结构应力和变形控制在容许范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号