首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
蒙华铁路洞庭湖特大桥主桥为大跨度三塔双索面钢箱-桁结合梁斜拉桥,主梁首次采用适合重载铁路大跨度三塔斜拉桥受力特点的钢箱-桁组合新结构,钢梁制造安装精度要求高,施工技术难度大。通过研究钢箱-桁组合结构下主桁、主塔、斜拉索和桥面系的刚度,提出增设中塔稳定索来提高三塔双主跨竖向刚度。中塔稳定索面积为241 cm2能使挠度降低20%,中塔塔顶水平位移降低41%,塔底弯矩降低64%。  相似文献   

2.
高速行车时多塔斜拉桥动力性能研究   总被引:2,自引:1,他引:1  
以某三塔斜拉桥设计方案为背景,通过数值计算分析,研究高速磁浮列车通过多塔斜拉桥时的结构动力性能。研究表明,三塔斜拉桥由于一阶竖弯振型的反对称性,在列车荷载作用下其行车方向的第二主跨易发生二次激振现象,使该跨的动力响应大于第一主跨,且桥梁竖弯基频越低,二次激振效应愈明显。为了降低桥梁过大的动力响应,提出几种加劲措施,分析表明,采用钢桁架加劲方案能大幅度提高桥梁的整体刚度,极大地改善其力学性能;采用中塔塔梁固结、边塔漂浮的结构体系对桥梁整体刚度的提高较为明显,适于多跨长联多塔斜拉桥。  相似文献   

3.
张欣欣  徐俊 《铁道勘察》2023,(3):109-115
为了研究不对称混合梁斜拉桥在高速铁路上的适应性,以阜淮高铁颍河特大桥为例,结合控制因素开展方案设计和结构设计。受通航、防洪及线路纵断面条件限制,主桥采用(31+73+230+114+40) m高低塔混合梁斜拉桥方案,主跨、大里程边跨分别跨越主、副通航孔,孔跨布置与航道要求相适应,梁高满足线路高程和净空要求。主桥采用半漂浮体系,在高塔侧设置纵向固定支座,双塔纵向设置黏滞阻尼器。通航孔上方主梁采用钢混结合梁,其余跨主梁采用混凝土梁,桥塔采用H形花瓶塔,斜拉索采用扇形布置。建立静动力模型,对该桥进行静力、稳定性、抗震、抗风、风车桥耦合计算分析,研究结果表明:主桥结构受力合理,静动力各项指标均满足规范要求,结构安全可靠,主梁刚度较大,满足无砟轨道铺设要求。  相似文献   

4.
预应力混凝土部分斜拉桥结构刚度大,经济性好,适宜铺设无砟轨道,是200~300 m跨度高速铁路桥梁的首选桥型。本文以高速铁路主跨248 m刚构部分斜拉桥为背景,研究高速铁路大跨度刚构部分斜拉桥合理的结构体系、轨道平顺性、索梁荷载比、合龙顶推力等关键技术。静力计算结果表明:刚构体系比连续梁体系刚度更大,经济性好,更有利于行车安全性;两种结构体系轨道不平顺均能满足要求,对于长短波不平顺,与连续梁体系相比刚构体系中跨不平顺值小,边跨不平顺值大;索梁荷载比与斜拉索刚度成正比,与主梁刚度成反比;刚构部分斜拉桥合龙后的收缩徐变和高温合龙导致结构产生附加内力,合理设置顶推力须综合考虑主墩受力与运营阶段塔顶位移。  相似文献   

5.
结合高速铁路主跨332 m高低塔混合梁斜拉桥的设计方案,建立空间有限元模型,针对高低塔混合梁斜拉桥的结构特点和适用条件,对结构体系、主梁形式、主梁高度、主塔高度、斜拉索索距、合理边中跨比、辅助墩的设置等进行了研究,并分析不同的设计方案对高低塔混合梁斜拉桥力学行为的影响,从而确定最优方案。研究结果表明:主桥孔跨布置采用(51+135+332+62+51)m合理可行,采用纵向固定约束体系时固定支座宜设置左低塔处,主梁高度为45 m;高低塔宜采用尾索角度29°,30°对应的塔高。  相似文献   

6.
阜淮高铁跨越颍河节点受航道等级、通航孔布置及线路纵断面条件限制,主桥需采用主跨230 m、边跨114 m的不等跨低高度桥梁结构。为选择合理的桥梁方案,分别对高低塔斜拉桥、独塔斜拉桥、连续钢桁梁柔性拱桥3个方案,从桥梁结构选型、力学及变形指标、施工及工程投资等方面进行综合比选;并对高低塔斜拉桥钢混结合段位置进行了比选和参数分析。研究结果表明:推荐采用(31+73+230+114+40) m高低塔混合梁斜拉桥方案,能很好地满足主副通航孔设置和低梁高要求,具有较大的结构刚度,对无砟轨道适应性好,且经济性较优;针对不等边跨各自受力特征,推荐不对称设置结合段位置,230 m和114 m跨采用结合梁,其余采用混凝土梁,结构经济合理;结合段远离主塔或辅助墩,结合段内力减小,但主梁内力增大,结合段变形增大;通过分析合理选择结合段位置,使结合段和主梁受力合理、静活载响应小、施工便利。  相似文献   

7.
研究目的:矮塔斜拉桥具有结构刚度大、施工方便、经济性好、造型美观等优点,近年来在铁路桥梁中得到广泛使用。本文以池黄高铁大跨度三塔矮塔斜拉桥为背景,针对高速铁路桥梁特点,就结构体系、合理结构参数、斜拉索张拉方案等关键技术进行分析研究。研究结论:(1)高速铁路多塔矮塔斜拉桥结构体系选择的关键是既保证变形控制,同时减少温度力以及混凝土收缩徐变产生次内力的不利影响,采用刚构连续梁体系,辅以外伸跨,可以有效减小下部结构受力,同时满足刚度要求,结构经济合理;(2)边跨跨度和外伸跨跨度对主梁变形影响较小,塔高和无索区长度对主梁残余徐变变形影响较大;(3)斜拉索采用悬臂阶段和合龙后两次张拉,且二次张拉拉索在施工二恒之前,可有效控制主梁残余徐变变形;(4)本研究结论可为今后同类型桥梁设计提供参考。  相似文献   

8.
椒江特大桥位于椒江河口区域,桥位处椒江江面宽约1.3 km,主航道为Ⅳ级航道,通行3 000 t海轮、2万t新造船,远期规划通行5 000 t海轮。大桥采用(84+156+480+156+84)m四线钢桁斜拉桥跨越主航道及南大堤,采用(72+4×124+72)m四线连续梁跨越备用航道及北大堤,采用主跨72~100 m连续梁或T构跨越道路,其余采用常规跨度简支箱梁。大桥在复杂的建设条件下满足了通行四线高速铁路的功能要求,可为四线高速铁路大型跨河桥梁桥式方案的确定和大跨度斜拉桥主桥设计提供参考。  相似文献   

9.
研究目的:大跨度斜拉桥结构复杂,为"塔-索-梁"空间组合结构,在荷载作用下,其无缝线路梁轨相互作用极为复杂。本文以一座铁路常用双塔钢桁斜拉桥为例,基于梁轨相互作用原理,建立斜拉桥上无缝线路纵向力计算模型,分析主塔墩温差、斜拉索温差、主塔墩刚度、主梁刚度及结构支撑体系对钢轨伸缩力的影响,为大跨度斜拉桥上无缝线路设计提供理论依据。研究结论:(1)随着主塔墩温差增大,钢轨伸缩力减小,主塔墩温差越大,主梁主跨竖向位移就越大;(2)随着斜拉索温差增大,钢轨伸缩力增大较小,但主梁主跨竖向位移急剧减小;(3)主塔墩刚度变化对钢轨伸缩力影响较小;(4)采用漂浮体系时,钢轨伸缩力与半漂浮体系几乎一致,采用塔梁固定支撑和塔梁固结体系时,主梁左端梁缝处的伸缩力减小,但主梁右端梁缝处的钢轨伸缩力反而增大,因此在铁路大跨斜拉桥设计中建议不采用这两种支撑体系;(5)该研究成果可指导大跨度斜拉桥无缝线路设计。  相似文献   

10.
鄂尔多斯市乌兰木伦河4#大桥主桥为主跨450 m的双斜塔双索面混合梁斜拉桥。为了检测桥梁结构的静力和动力性能,评定桥梁的承载能力,为工程验收提供科学依据,对该桥进行了成桥静动载试验,同时结合理论计算,就主梁和主塔截面应力、主梁挠度、主塔塔顶纵向位移、斜拉索索力和结构振动特性等进行了对比分析。试验结果表明桥跨结构设计合理,桥梁刚度和承载能力满足设计要求。  相似文献   

11.
为研究高速铁路多塔斜拉桥力学行为,以某高铁黄河桥为背景,对主跨5×260m六塔斜拉桥进行结构参数及受力特性研究.结果表明:5主跨斜拉桥主梁竖向刚度约为单主跨斜拉桥的0.5倍;能显著控制塔顶水平位移的措施可有效改善主桥总体刚度,如采用刚性塔、加劲索;温度、收缩徐变引起长联主梁伸缩,对边塔形成"拖拽"效应,桥塔两侧索力变化...  相似文献   

12.
研究目的:三塔双主跨斜拉桥相较常规大跨斜拉桥而言,具有一定的经济优势,但也存在竖向刚度低、拉索疲劳应力幅高等缺点,目前在铁路上尚未得到广泛应用。本文以广佛江珠城际(72+96+336+336+96+72) m三塔斜拉桥为背景,对影响刚度的结构参数进行分析,进而拟出合理结构尺寸,并对结构进行力学计算,得出在城际铁路中推广三塔斜拉桥的可行性。研究结论:(1)竖向刚度随主梁高度增加而增大,但增幅低于梁高增幅,主梁采用钢箱梁时,通过增加主梁梁高来提高竖向刚度会较不经济,综合考虑后梁高取4.5 m;(2)索塔高度取96 m,塔柱截面取7 m×4 m;(3)斜拉索采用双索面扇形空间布置,索塔锚固间距2 m,斜拉索在主梁上锚固间距为8 m,斜拉索与主梁夹角为30.3°~78.3°;(4)辅助墩位置选择距离主塔96 m;(5)三塔斜拉桥在城际铁路荷载作用下受力良好,具备推广的价值。  相似文献   

13.
沪通长江大桥为沪通铁路的关键和控制性工程,主航道桥为主跨1 092 m的双塔钢桁梁斜拉桥。在主航道桥29~#主塔墩施工时,由于施工工期紧张采用了塔梁同步的施工方法。介绍了塔梁同步施工的控制原理、施工原则和桥塔的测量控制,研究了大节段钢桁梁双悬臂架设的平衡控制、各合龙口敏感性以及中跨合龙技术,对大跨度斜拉桥塔梁同步施工工艺及工效进行了总结。实践结果表明,大跨度斜拉桥采用塔梁同步施工工艺,在确保主塔施工质量安全控制的同时,可明显加快主塔施工进度,有效地缩短了工期,为后续施工创造了有利条件,能产生较好的经济及社会效益。  相似文献   

14.
研究目的:本文以金海特大桥跨磨刀门水道主跨480 m公铁两用斜拉桥方案设计为背景,针对大跨度公铁两用混合梁斜拉桥设计所应考虑的各项因素,建立不同形式的主桥空间有限元模型,目的是对比不同跨度辅助墩、不同塔高以及主梁类型对该结构力学性能的影响,从而确定合理的结构布置形式。研究结论:(1)主跨480 m斜拉桥采用公铁同层建造,具有结构合理,分建过渡时灵活方便,结构刚度大,车桥动力性能好,抗风、抗震性能好等优势,能够按照规范满足各种设计荷载组合下的结构强度、刚度等要求;(2)边跨必须设置辅助墩,以提高结构刚度,减少索、梁疲劳,而边跨布墩的多少、辅助墩之间的间距大小将取决于边跨的施工方案及整体结构的造价;(3)分离式扁平钢箱梁截面的扭转刚度较大,抗风稳定性好,经风车桥耦合振动分析,主梁结构能够提供较高的舒适性和安全性;(4)本研究成果对今后公铁合建斜拉桥结构选型工作具有一定的指导意义。  相似文献   

15.
以蒙华重载铁路主跨248 m部分斜拉桥为例,采用有限元分析理论,分析在该跨度范围内部分斜拉桥应用于重载铁路的适应性及特殊性。对该桥结构体系、主梁梁高、预应力次内力、桥塔刚度、桥塔高度及索塔梁刚度匹配等结构参数进行比选研究,确定合理布置形式。结果表明:(1)该重载铁路部分斜拉桥采用塔梁固结、墩梁分离体系,主墩支座采用双1 90 000 kN超大吨位球形钢支座;(2)主梁中支点—跨中梁高采用13 m-6 m组合为优;(3)短预应力钢束时弯矩近似矩形分布于预应力钢束布置区域,次内力较小;长预应力钢束次内力弯矩近似呈三角形分布,次内力影响明显;(4)桥塔尺寸主要由索鞍等构造及桥塔本身受力控制,其刚度对结构整体受力及刚度影响均较小;(5)为提高跨中截面等控制性区域结构受力性能,桥塔采用高塔型体系,高跨比1/4.35;(6)结构整体刚度主要由主梁提供约占67%,主塔及拉索对整体刚度贡献值为33%,主塔及拉索对刚度影响因素主要为桥塔高度。  相似文献   

16.
研究目的:跨度超过200 m的无砟轨道桥梁,采用普通PC梁已不尽合理,而大跨钢结构桥梁对无砟轨道的适应性尚存在许多不明之处,且造价较高。因此,PC梁与钢结构相结合的组合结构桥梁,兼具二者优点,是一种切实可行的结构。组合结构一般有梁拱、梁索、梁桁组合,本文结合西延高铁王家河特大桥分别就三种组合结构在高铁无砟轨道中的适应性进行分析,从而为无砟轨道大跨度桥梁选型拓宽思路。研究结论:(1) 248 m梁拱、梁索、梁桁组合结构,均可满足高速铁路无砟轨道的要求;(2)对于主跨的混凝土徐变变形控制方面,梁拱组合结构效果最好;(3)部分斜拉桥增设背索对控制主梁变形效果显著;(4)本研究成果对PC组合结构在高速铁路大跨桥梁中的应用具有一定意义。  相似文献   

17.
为研究大跨度高低塔部分斜拉桥在高速铁路上的适应性,以深汕铁路深圳水库特大桥为工程背景,从技术性、经济性等方面对比孔跨布置(33+242+143+44+29) m混合梁独塔斜拉桥和(78+242+139+36) m部分斜拉桥两种桥式方案的优劣,并针对推荐的部分斜拉桥方案进行技术分析,介绍其设计细节及计算结果。研究表明:相较于独塔斜拉桥方案,部分斜拉桥方案刚度大、投资小、工期短,具有明显优势;在部分斜拉桥方案中,主力+附加力组合作用下刚构连续体系的基础受力为刚构体系的85.8%;相较于采用实体墩,结构采用双肢薄壁墩时梁体跨中挠度降低8.3%,下部结构混凝土用量减小17%;梁高与桥塔高度会显著提高结构刚度,几乎呈线性增长趋势。综合而言,高低塔部分斜拉桥结构尤其适用于控制点密集、桥位选择受限的复杂地形,是一种合理、可靠的结构体系。  相似文献   

18.
研究目的:高速列车运行对无砟轨道的平顺性要求非常严格,而大跨度桥梁在温度荷载作用下引起的主梁竖向变形是引起轨道平顺性发生变化的主要原因。本文以商合杭铁路沙颍河大跨度矮塔斜拉桥为背景,对不同的桥梁结构体系、边跨比、主梁类型、梁高、斜拉索规格及布置、桥塔高度等进行对比分析,研究其对温度变形的影响,从而确定矮塔斜拉桥的无砟轨道适应性。研究结论:(1)矮塔斜拉桥可以满足无砟轨道的平顺性要求,保证高速铁路的行车安全性及舒适性;(2)有效释放梁体收缩徐变及温度变形的桥梁结构体系更加容易满足轨道平顺性要求,应优先选用;(3)斜拉索的温度变化及索梁温差是引起主梁竖向变形的主要因素,确定合适的斜拉索规格、安全系数、索间距,既能充分发挥斜拉索对主梁的贡献,又能减小温度荷载作用下主梁的竖向变形;(4)为减小斜拉索对温度变形的影响,主梁宜采用混凝土结构;(5)本研究成果对今后高速铁路矮塔斜拉桥设计具有一定的指导意义。  相似文献   

19.
随着轨道交通建设区域的不断延伸,大跨度桥梁越来越多地应用于轨道交通领域。由于矮塔斜拉桥属于高次超静定复杂结构,刚度、温度耦合效应明显,控制设计参数多,同时轨道交通桥梁的荷载、刚度、变形等指标与公路桥梁有所不同。针对南京市宁句城际轨道交通大跨度矮塔斜拉桥,通过对各关键参数的比选分析,得出该桥的主要结构参数对结构力学性能的影响规律。研究结果表明:矮塔斜拉桥的受力性能受主梁刚度影响较大,而受桥塔的刚度影响较小,增大桥塔高度、拉索间距和塔根无索区长度将改善结构的受力性能。  相似文献   

20.
深汕铁路建设标准高,地形、地质条件复杂,沿线分布较多道路、河流,桥梁建设条件复杂。文章以深圳水库特大桥高低塔部分斜拉桥和跨厦深铁路特大桥钢-混组合梁2座特殊结构桥梁为例,结合工点实际情况,介绍特殊结构桥梁桥式方案、结构设计、受力分析、指导性施工组织设计,可为复杂建设条件下高速铁路桥梁建设提供借鉴和参考。结论可知:(1)部分斜拉桥结构刚度大、动力特性优、跨越能力强,斜拉索加劲可有效控制混凝土结构的徐变变形,边跨受地形条件限制较小时,可因地制宜选用高低塔方案,高低塔部分斜拉桥可根据具体情况,选择塔-墩-梁固结,既可以增大结构刚度,也可以避免设置超大吨位支座;(2)跨越既有高速铁路,可考虑采用钢盖梁门式墩配合钢-混组合梁,钢盖梁吊装就位,组合梁拼装后横向顶推就位,有效减少对既有高速铁路的影响;(3)门式墩结构主梁采用钢-混组合梁代替预应力混凝土梁,可以显著减少梁部重量,改善门式墩受力,加大门式墩跨度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号