首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究寒区隧道冻害机理,以吉图珲高铁沿线10座隧道为依托,结合现场长期实测数据和数值模拟实验,提出寒区隧道洞内温度场分布规律及计算方法。研究结果表明:隧道洞内空气温度场可采用二次抛物线来拟合和计算,其主要控制参数包括隧道长度、隧道洞口基准温度、隧道洞口温度增长梯度和隧道洞内平均风速;隧道衬砌结构具有较好的短波滤波特性,能够很好地过滤掉衬砌表面日温度的波动变化;隧道衬砌背后温度与衬砌表面5日平均温度曲线基本一致,可据此确定隧道钢筋混凝土衬砌设置长度;无保温层情况下,隧道二衬壁面温度与初支-二衬接触面温度平均差值为2.2℃,当隧道内二衬壁面温度低于-2.2℃时,需设置保温层;有保温层情况下,隧道二衬壁面温度与初支-二衬接触面温度平均差值为10℃,当隧道内二衬壁面温度低于-10℃时,保温层的保温效果会将难于满足隧道防寒的要求,此时需与其他保温措施相结合。  相似文献   

2.
为了研究寒区隧道的防寒保温设计问题,采用数值分析方法探讨不同外界气温、围岩地温以及有无保温层等条件下寒区隧道温度场的分布规律和保温层适应性研究,并采用叠加原理、分离变量法和贝塞尔特征函数建立列车风影响下寒区隧道温度场的计算模型,分析有无列车运行条件下寒区隧道温度场的变化规律。研究结果表明:由于二衬后出现负温分布对隧道衬砌结构安全性影响较大,因此建议将二衬后不出现负温分布作为寒区隧道保温措施的控制指标;在不考虑列车风影响条件下,保温层法最佳适用于最冷月平均气温为-2~-15℃的地区,当最冷月平均气温低于-15℃、围岩地温低于5℃时,保温层法应与主动保温措施相结合;当列车运行速度为300km/h、运行间隔为30 min时,通车与不通车相比隧道洞内中间位置平均气温下降约1.22℃,二衬后沿隧道进深方向出现负温的距离约增加36.8%。  相似文献   

3.
陶琦 《铁道建筑》2022,(1):130-134
针对我国寒区隧道冻害问题,以吉林省东南里隧道为例,通过现场温度实测和数值模拟,分析保温层的设防长度、设置厚度和适应范围,并提出寒区隧道电热膜加热保温系统.采用等效厚度法,给出保温层厚度的计算方法和保温层变截面厚度的设置方法.结果表明:被动保温措施保温层法具有一定的温度适应性,当隧道外界气温低于-18.5℃时,应考虑其他...  相似文献   

4.
以高寒地区吉图珲客运专线后安山大断面隧道为研究对象,采用ABAQUS有限元建立计算模型,讨论隧道贯通前后保温层厚度对温度场的影响和保温设防段,分析结果表明:(1)距离隧道洞口越远,防止围岩出现冻结所需的保温层厚度越小;随着保温层厚度的增加,围岩的冻结深度会相应变小;(2)隧道贯通前的保温设防段长度为450~500m,隧道贯通后的保温段长度为720~830m,较隧道贯通前增加了近300m;(3)验证了后安山隧道在距洞门721 m范围内铺设5 cm厚的聚氨酯保温板的保温方案。  相似文献   

5.
吉图珲客运专线后安山隧道温度场分布规律测试及分析   总被引:2,自引:2,他引:0  
以寒区后安山隧道工程为依托,通过对试验段温度场的测试,分析衬砌围岩温度分布规律、洞内纵向温度分布规律,并在此基础上,对保温板的保温效果进行探讨,分析结果表明:(1)边墙、拱腰、拱顶部位各测点随时间的变化规律成正弦函数,并和外界气温同步变化;距离衬砌表面60 cm内温度变化最为剧烈;在径向3 m范围内,围岩内温度呈线性变化趋势;围岩径向存在一个比较稳定的温度边界条件;隧道贯通后,各测点的温度下降3℃左右。(2)隧道纵向温度场沿路线呈抛物线分布,寒季为开口向下的抛物线,暖季则相反;进入隧道500 m后洞内气温受洞外气温的影响逐渐减弱,温度分布也逐渐均匀。(3)保温板内外两侧温度差最大9.21℃,证明其具有良好的保温效果;建议在隧道防寒保温段采取非等厚保温板的铺设方法更为经济合理。  相似文献   

6.
针对寒区铁路锡(林浩特)—乌(兰浩特)线扎尔斯台隧道出现的冻害问题,分析了冻害产生的原因。利用ANSYS有限元软件对隧道温度场进行了数值模拟,分析了隧道结构及围岩内部的温度场分布规律。通过方案比选,确定采用衬砌表面喷射硬质聚氨酯保温层的整治方案,并对该方案的效果进行了数值分析。结果表明:在隧道衬砌未设置保温层时隧道内冻结深度达到了210 cm,围岩内容易出现冻胀现象;设置保温层后15 cm厚度的保温层内全部出现负温,二衬混凝土内部5 cm范围内出现负温,在围岩内没有出现负温及冻胀现象;随着径向距离的增加,围岩温度逐渐升高,但变化逐渐减缓并趋于稳定。  相似文献   

7.
研究目的:为进一步探究温度场的变化规律和保温层敷设厚度问题,以2022年冬奥会重大交通保障项目金家庄特长螺旋隧道为依托,通过现场实测、理论分析和COMSOL数值模拟相结合的方法,建立隧道围岩区的随机裂隙模型,研究孔隙率、渗透率、随机裂隙孔径和水头对温度场的影响,并基于温度场进一步对比解析解和数值模拟的保温层设计厚度。研究结论:(1)径向温度值及其变化速率随围岩孔隙率和渗透率的增大表现为增大趋势,随着随机裂隙孔径和下边界水头的增大,径向温度值表现为增大,变化速率则表现为减小的趋势,孔隙率对温度场影响最大,渗透率对温度场影响最小,径向温度分布规律可用Asymptotic1模型表示;(2)由于随机裂隙和渗流的影响,衬砌和围岩接触面的温度值不完全对称,但总体表现为从拱顶到仰拱逐渐升高;(3)孔隙率和渗透率对冻结深度的影响可用Exp3P2模型表现,随机裂隙孔径和下边界水头对冻结深度的影响可用Exp Dec1模型表现,理论分析和数值模拟结果说明保温层厚度的解析解较数值模拟大;(4)本研究结论可为相关寒区隧道的温度场发展、分布规律和保温层厚度设计提供借鉴或参考。  相似文献   

8.
高寒地区隧道保温隔热层设防厚度的研究   总被引:4,自引:0,他引:4  
结合高原地区鹧鸪山公路隧道抗防冻实验研究课题,介绍以隧道所处的特殊地理环境和气象条件为背景,根据隧道围岩和结构体现场温度实测数据,通过有限元计算,得出隧道围岩体内的温度场,说明如何用数值模拟检算二次衬砌表面保温隔热层的设防厚度.  相似文献   

9.
根据国内35座季节性冻土区隧道温度场实测结果,分析了在建及运营隧道温度场分布规律,建立了季节性冻土区运营隧道温度纵向影响长度上限值拟合公式,同时验证了Hitoshi Kurokawa经验公式计算结果处于温度纵向影响长度下限,并给出了寒区隧道洞口保温段设置长度建议值。根据未设保温层隧道的调查结果拟合得到围岩径向冻结深度与距洞口距离的关系式,并根据围岩冻结深度将隧道分为4个影响区,提出应合理进行保温段分区。  相似文献   

10.
研究目的:受温度变化影响,寒区隧道衬砌结构易出现开裂、酥脆、剥落等病害。本文通过分析寒区隧道的环境作用,并通过调研我国寒区铁路隧道的结构冻害情况,归纳隧道结构的冻胀机理,提出寒区隧道结构的抗冻措施,探讨保温层在铁路隧道的适用性及设计方法、施工工艺,从而明确今后需要进一步研究的寒区隧道结构抗冻技术。研究结论:(1)寒区隧道衬砌结构冻害可分为特殊地层隧道围岩冻胀型冻害和结构缺陷型冻害,需采取相应措施进行控制;(2)负温差引起的温度应力作用,易导致寒区隧道衬砌开裂,需采取变形缝等构造措施;(3)季节性冻土区铁路隧道应慎用保温层;(4)本研究成果可为寒区隧道结构抗冻提供参考。  相似文献   

11.
寒区隧道隔热层设计参数的实用计算方法   总被引:1,自引:0,他引:1  
根据冻土学基本理论推导寒区隧道围岩的季节冻结深度和季节融化深度计算公式.根据传热学的热流连续定律,分别计算隧道围岩的热流量及含隔热层和衬砌隧道围岩的热流量;采用当量换算法推导出寒区隧道隔热层厚度及导热系数的计算公式.以青藏铁路风火山隧道为例,采用推导的隔热层厚度及导热系数公式进行计算.结果表明:隧道DK1 159+046断面在2004年需要的隔热层厚度为4.1 cm,导热系数为0.03 W·(m·℃)-1;考虑未来50年升温2.6℃,全隧道铺设厚度为5cm、导热系数为0.03 w·(m·℃)-1的隔热层,在前20年基本保证围岩不融化,在之后的30年围岩可能会融化.隧道实际的隔热层厚度为5 cm,导热系数为0.03 w·(m·℃)-1,2004年实测地温资料表明隧道围岩没有融化.此计算公式在寒区隧道设计的初始阶段,可用于指导隧道隔热层厚度和导热系数的参数设计.  相似文献   

12.
受长期低温环境作用,寒区铁路隧道衬砌易出现开裂、剥落等病害,影响结构的安全耐久性。通过梳理分析寒区隧道衬砌抗冻设防相关建设标准现状及存在问题,从设计和施工方面提出需要研究完善的主要内容,并结合具体工程实例,进一步探讨抗冻设防段衬砌的配筋参数、伸缩缝设置等主要设计标准和保温层防水施工工艺,提出寒区隧道衬砌模段长度计算方法。结果表明:(1)抗冻设防段衬砌的纵筋宜采用“细而密”的配置方式,有利于提高结构的抗裂性能;(2)“零缝宽”伸缩缝在一定条件下能够消减寒区隧道温度应力作用;(3)“喷涂式”聚氨酯保温板防水处理施工工艺可有效提高保温性能;(4)隧址区的年平均气温应作为寒区隧道衬砌环境温差的重点考量因素,计算结果表明,当最冷月平均气温-3~-8℃,年均温12~8℃时,12 m的衬砌模段长度亦可满足季节性温差要求。  相似文献   

13.
混凝土水化热是导致围岩融化的主要热量来源之一,不同水化热放热方程(不同放热速率)对结果影响较大。本文以昆仑山隧道为例,利用有限单元法计算考虑混凝土水化热及其放热过程和不考虑水化热的隧道围岩融化回冻过程,分析水化热对围岩融化、回冻过程的影响。2种工况计算中均考虑施工过程、隧道衬砌内缘温度变化、防水隔热保温层、入模温度、相变等因素。结果表明:在寒区隧道围岩施工过程中,混凝土水化热增加了围岩的最大融化深度,同时使围岩温度升高;考虑混凝土水化热影响寒区隧道围岩回冻时间比不考虑水化热情况晚1年。  相似文献   

14.
对于当前寒区隧道普遍采用的保温隔热材料存在的诸多不足,根据玻化微珠保温砂浆的物理力学性能,提出将玻化微珠保温砂浆应用于寒区隧道隔热层。结合工程实例,通过有限元计算,对玻化微珠保温砂浆在寒区隧道保温隔热效果进行分析,并对隧道围岩温度场的影响因素进行评定。结果表明,8cm厚的玻化微珠保温砂浆具有良好的保温隔热性能,可以减少自然气候对隧道围岩温度场的影响,为其在工程中的应用提供相应的依据。  相似文献   

15.
结合吉珲客运专线隧道建设,选择具有代表性的中、长和特长隧道,在一定隧道进深拱腰位置的二衬表面和二衬背后围岩径向设置测温传感器,连续监测整个冬季隧道内空气和围岩温度变化情况,分析隧道纵向和围岩径向温度梯度变化规律,探究隧道长度、埋深、自然风、列车活塞风等因素对隧道温度场的影响,通过现场试验获得寒区隧道围岩冻结范围,为隧道防排水设施和保温措施的设计以及隧道冻害诊断分析提供理论依据。研究表明,隧道温度场受自然风影响显著,受列车活塞风影响较弱;自迎风一侧隧道口沿隧道轴向进深增加,隧道内空气温度逐渐升高,温度变化梯度与风速密切相关,在背风侧隧道口较短范围内温度逐渐趋近环境温度;隧道围岩温度沿径向总体呈现上升趋势,具体温度梯度变化受隧道埋深、围岩性质和山体内水流影响较大。  相似文献   

16.
寒区隧道三维温度场数值分析   总被引:4,自引:0,他引:4  
根据考虑相变瞬态温度场的控制微分方程,应用Galerkin法推导出三维有限元计算公式并编制了计算程序,对一座已经建成的寒区隧道进行了算例分析。分析表明沿隧道轴向的初始温度不是均匀的,并且沿轴向也有热量传递,隧道围岩冻结深度沿轴向分布与隧道内大气平均温度沿轴向分布的规律不同,因而,对寒区隧道进行三维温度场分析是必要的。为了保持寒区隧道围岩的原始热状况,防止因冻胀和融沉而发生破坏,采用铺设合理保温材料的方法是行之有效的。从而,为寒区的实际工程设计提供理论依据和计算方法。  相似文献   

17.
冰-水相变对寒区隧道动态温度场影响研究   总被引:1,自引:1,他引:0  
为了揭示冰-水相变对寒区隧道动态温度场的影响,通过建立隧道有限元模型,对比分析考虑相变与否两种情况下隧道温度场的动态变化,研究隧道在内部气温变化作用下的冰-水相变发展过程。研究表明:围岩内部温度随深度增加而升高,年变化幅度逐渐减小,变化相位逐渐滞后;考虑冰-水相变后,隧道温度场年动态变化过程改变较大,温度年变化幅度显著减小;在外界低温的作用下,主洞与导洞部位均有结冰现象,衬砌和围岩内部在1月份开始结冰,4月份之后完全冻结区消失,仅在衬砌和围岩存在冰水混合区,至7月份完全解冻,解冻后重新冻结的月份为10月份,之后冻结范围逐渐扩大,全年冻结发展最快的时间为11月份。  相似文献   

18.
寒区隧道保温效果的现场观察研究   总被引:12,自引:0,他引:12  
对一个寒区高原冻土隧道的长期现场观察结果进行了分析研究,描述了该地区的隧道工程地质状况,提供了隧道内外的观测温度。并根据观测到的隧道围岩温度,确定了围岩最大冻结深度,以及通过分析观测数据,发现在隧道进出口安装保温门的保温效果比安装防雪棚的保温效果好,更有利于防止寒冷地区由于冻融而导致的破坏。  相似文献   

19.
高速铁路隧道列车振动响应影响因素分析   总被引:6,自引:0,他引:6  
运用有限差分法,建立了隧道-围岩相互作用的动力计算模型,分析围岩条件、列车运行速度、隧道底部结构设计参数以及基底状况对列车振动荷载作用下隧道结构动力响应的影响.结果表明:隧道衬砌结构动力响应随着围岩级别的提高、行车速度的增加和基底软弱层厚度的增加而增大,随着仰拱厚度、填充层厚度和仰拱矢跨比的减小而增大.隧道底部结构厚度...  相似文献   

20.
为了研究寒区隧道在运营阶段衬砌结构的可靠性,考虑到冻胀力、围岩压力和结构自重应力对围岩衬砌结构的影响,以昆仑山寒区隧道工程为背景,采用ANSYS中的PDS(概率设计)模块和蒙特卡洛拉丁超立方抽样方法,对影响寒区隧道衬砌结构可靠性的主要因素以及保证隧道结构安全的可靠性指标进行研究。结果表明:基于ANSYS数值模拟,通过研究冻土围岩温度场和应力场的耦合结果,得到冻胀对衬砌结构产生的最不利的位置;以概率论和数理统计相结合的方式,对衬砌结构最不利位置的可靠性进行定性和定量的分析,得到衬砌结构的可靠性指标;蒙特卡洛法中的拉丁超立方抽样提高了抽样概率的精确性,概率设计的敏感性和设计变量之间的散点图分析,有利于确定影响衬砌结构可靠性的主控因素,进而针对可控因素采取措施,以此提高衬砌结构的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号