首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
"桥建合一"型地铁高架车站的轨道梁刚接在站房结构框架梁上,存在严重的车致振动舒适度问题。为了研究列车过站时"桥建合一"型地铁高架车站的振动舒适度规律,以某典型侧式"桥建合一"型地铁高架车站为研究对象,采用数值计算软件Matlab建立27自由度列车模型,采用有限元软件Ansys建立车站有限元模型,基于分离迭代法实现列车-车站的耦合作用,并对比实测数据验证列车-车站耦合振动分析模型的准确性。采用已验证的列车-车站耦合振动分析模型计算列车到发站时站房的振动舒适度敏感点,并研究列车车速、楼板厚度和桥墩跨度参数对站房振动舒适度的影响。研究结果表明:"桥建合一"型地铁高架车站的结构动力特性具有特殊性,典型楼板的1阶竖弯频率为28.91 Hz,是高铁客运站的4.7~7.7倍;站厅层振动舒适度敏感点位于结构缝附近和车站端部悬挑区域,列车到站时站厅层振动超标最大为32%;站房的车致振动相应总体上随列车车速的增加而增大,列车正线过站时60~80 km/h速度区间与列车会车过站时20~40 km/h和60~80 km/h速度区间的楼板振动增幅较为显著;楼板的车致振动在其自振频率附近会产生"共振效应",楼板厚度参数对楼板自制频率的影响较小,桥墩跨度参数对楼板自振频率的影响较大,合理设计桥墩跨度可以有效避免楼板产生"共振效应"。  相似文献   

2.
对南昌西站综合交通枢纽进行模型仿真,从时域和频域的角度分析南昌地铁4号线对该站的振动影响。研究南昌地铁4号线在不同行驶速度、不同隧道埋深下的振动传播规律及频率分布特点。研究结果表明,在地铁列车荷载作用下,南昌西站的振动幅值随着振源距离增大而减小,在地面距离轨道中心线24~36 m、60~72 m的区域出现振动放大区。车站不同结构层的振动频率分布特性基本一致,主要集中在0~60 Hz范围内。车站结构横向环境振动水平比竖向环境振动小,竖向振动响应与横向、纵向的振动响应频域分布较为一致。车站结构关键点出现最大振级的频率随着结构高度的增大逐渐向低频移动。  相似文献   

3.
为研究地面过渡段地铁振动的响应特性,对广州市坑口地铁站前所处地面过渡段轨行区以及其临近地面进行振动以及噪声测试,对所得振动加速度进行傅里叶变换,分析了列车振动在横向上的传播规律以及列车振动的影响因素,得到了以下结论:列车制动行为、钢轨接头以及列车载重的增加会增强列车振动,而碎石道床可以有效减弱列车振动的传播;上、下行线列车经过时,其轨枕测点振动加速度峰值分别为10.80和4.22 m/s2,地面振动加速度峰值为0.07 m/s2,振动加速度在横向上的传播呈现逐渐衰减的趋势;列车振动引起下方轨枕最大频响在110 Hz左右,频响范围为0~400 Hz;旁边轨道轨枕最大频响在80 Hz左右,频响范围为0 ~200 Hz;地面最大频响在50 Hz左右,频响范围为0 ~100Hz;整体车致振动传播过程中高频成分衰减较大,到了地面低频响有所放大;列车运行致使振动噪声在地面临近轨道一侧噪声最大值为95.5 dB,远离轨道建筑物楼底噪声最大值为87.9 dB,超过规范噪声限制75 dB,振动噪声在横向上有小幅度衰减.  相似文献   

4.
为了研究地铁道岔区段道床板振动特性,并且为减振降噪设计提供理论参考,以地铁道岔区段为研究对象,以实测轨道不平顺数据为基准,建立道岔区段仿真模型,进行计算。通过时域、频域及模态分析,得出不同工况(速度)下道岔区段道床板振动响应。结果表明:相同速度下,道床板尖轨位置的垂向振动响应要大于心轨位置,并且其垂向振动加速度峰值是心轨位置的近2倍左右。随着列车通过速度的提高,无论尖轨还是心轨位置,道床板的振动响应都会逐渐增强。道床板尖轨位置垂向振动对应的主频为4,80 Hz及140 Hz,在80 Hz,道床板产生低频垂向振动最大。而道床板心轨位置垂向振动对应的主频为5,75 Hz及145 Hz,并且在75 Hz处,道床板产生低频垂向振动最大。模态分析时,发现对道床板尖轨和心轨位置振动影响最大的是各阶连续弯曲和混合扭弯模态。  相似文献   

5.
清河站站房结构采用建桥合一的结构体系,列车高速通过时产生车致振动的舒适度问题需要重点研究。通过车辆—轨道模型得到列车对轨道的振动激励,将激励时程输入轨道—结构—环境土体模型,计算结构动力响应的研究方法,进行车致振动的舒适度评价,对清河站的研究得到:高铁列车在到发线进出站时,清河站候车层楼板最大预测Z振级满足规范要求;在正线高速通过时,候车层楼板最大预测Z振级超过规范限值,不满足要求,通过采取结构措施可达到舒适度要求。同时得出建桥合一结构体系在高铁列车通过时,正线位置的振动响应大于到发线,行车位置的响应大于其他位置,站台层的振动响应大于高架候车层和夹层的结论。  相似文献   

6.
"桥建合一"型地铁高架车站,相比于传统的"桥建分离"型高架车站,具有更严重的振动和结构噪声问题.以某典型"桥建合一"型地铁侧式高架车站为工程背景,通过实测列车到发站时站房结构振动和结构噪声响应,分析这类结构型式的响应规律,同时对不同功能区进行舒适度评价.研究结果表明:"桥建合一"型地铁高架车站的振动更剧烈,站厅层峰值加速度是"桥建分离"型高架车站的2~6倍;相比于柱顶/底,楼板振动的优势频段为10~60 Hz,低频振动被放大,并在楼板一阶竖弯频率处出现共振;相比于柱顶/底,悬挑端部振动在低频处被放大,受雨棚立柱的约束作用,站台层悬挑端的振动放大效果弱于站厅层;列车到发站时站厅层不满足振动舒适度要求;休息室内结构噪声影响较振动严重,最大超标量为21.02 dB.  相似文献   

7.
浮置板式轨道结构隔振效果仿真研究   总被引:13,自引:2,他引:11  
建立列车—轨道结构耦合系统有限元模型,将轨道不平顺作为列车—轨道结构耦合系统的激励源,对普通碎石道床轨道结构和浮置板式轨道结构的列车—轨道结构耦合系统动力学性能进行仿真研究,对比分析这2种类型的轨道结构系统振动响应与系统振动传递函数,评价浮置板式轨道结构的隔振效果。分析结果表明,浮置板式轨道结构与普通碎石道床轨道结构相比,振动加速度降低约70%,距线路5 m处大地振动加速度响应峰值降低约62.8%,相应Z振级衰减约10 dB,竖向振动加速度频率范围由0~200 Hz降到0~60 Hz,有效起到了振动隔离效果。  相似文献   

8.
为了解不同地铁列车作用下钢弹簧浮置板道床的结构动力响应,分别选取隧道埋深、结构等条件类似的已运营地铁线路进行测试与分析。结果表明:相同列车速度下,A型车作用下钢弹簧浮置板道床的钢轨、道床和隧道壁振动加速度级均大于B型车,对邻近区域和建筑的振动和二次结构噪声影响更大,但在评价城市区域环境振动(人体承受建筑物内振动)时,计权后A型车与B型车Z振级较为接近;在A型车作用下,实测钢弹簧浮置板区段的钢轨、道床在1/3倍频程中心频率80~100 Hz和400~630 Hz存在峰值;隧道壁在1/3倍频程中心频率80~100 Hz和400 Hz附近存在峰值。  相似文献   

9.
以城际铁路32m双线、单线混凝土简支箱梁和高速铁路32m双线混凝土简支箱梁为研究对象,采用现场试验方法,对箱梁各板件在列车作用下的中高频振动响应进行测试分析。将测试结果与其他混凝土简支箱梁和U梁的试验值比较,讨论混凝土简支箱梁各板件中高频振动的影响因素。研究表明:混凝土简支箱梁各板件的中高频振动分布在200Hz以下,最大振动速度级主要出现在31.5~80 Hz频带;峰值振动主要由车轮-轨道系统固有频率决定,同时,与轴距相关的加载频率和板件的局部振动模态将影响中高频振动响应;板件尺寸、约束条件、振动传递路径决定中高频振动响应的大小,U梁的振动响应比更高运营速度下的箱梁大;等截面简支梁各横截面位置在列车通过时段内的总速度级没有明显差异。  相似文献   

10.
为研究高速铁路路堑在高速列车荷载下的地面垂向振动随距离传播规律,对宝兰高铁路堑段地面垂向振动进行现场试验,对现场试验的数据从时域和频域两个方面进行分析揭示地面垂向振动加速度响应特征。结果表明,路堑垂向振动加速度在距离线路中心线12.5~40 m总体呈衰减趋势,靠近线路中心线处12.5~20 m处垂向振动加速度衰减较快,较远处20~40 m处衰减速度较慢。地面垂向振动加速度在各测点处由60 Hz及100 Hz附近的频率成分主导,随着距离的增大,110 Hz左右的高频成分衰减很快,到了距线路中心线20~40 m,振动加速度在60 Hz左右的频率成分占优。依据现场工况,建立了列车-轨道-路堑-地基数值分析模型,并通过数值试验的方法,设置不同的场地速度特性,分析不同场地条件对路堑振动响应的影响。数值分析表明,场地速度特性(覆盖层与下卧层模量比、覆盖层厚度)是影响地面振动剧烈程度的重要因素,地基覆盖层与下卧层模量比越大,地面振动越强烈,模量比一定,覆盖层厚度越小,地面振动越大。  相似文献   

11.
针对轨道交通槽形梁局部振动的问题,基于有限元理论,建立轨道交通槽形梁有限元模型。对其进行模态分析,再基于车辆-轨道耦合动力学理论,计算槽形梁在列车荷载作用下的局部振动响应,通过对选取的5个输出点的加速度频谱曲线进行分析。研究结果表明:槽形梁翼缘板的横向振动响应最大,最大的加速度振级为107.2 d B。槽形梁底板的垂向振动加速度在50 Hz处有峰值,左右两边的翼缘板和腹板的横向振动响应频谱曲线相类似,都在12.5 Hz和40 Hz处有峰值。通过槽形梁结构参数对槽形梁局部振动响应的敏感性分析,表明加厚底板厚度能够很好地降低槽形梁的振动响应。但并非越厚越好,其最佳值还有待进一步分析。  相似文献   

12.
以珠三角城际列车某站房为例,研究列车高速通过站房所引起的建筑结构动力响应。通过车辆-桥梁耦合系统以及桥梁-站房系统的求解,确定车辆-桥梁-站房结构系统动力学计算的求解策略与方法,解决了在高速列车穿越引起的振动下建筑结构的安全(稳定、强度、疲劳等)、经济及使用性能的问题。研究结论为:列车在正线通过及到发线进站时,站房变形以轨道梁自身的跨中弯曲变形最为明显,量值为1.5~3.25 mm;站厅层变形很小,可忽略;列车到发线进站时,横向框架梁跨中有0.5~1.5 mm的竖向变形;列车在正线过站以及到发线进站时,除轨道梁外,该站房其余结构竖向振动波均小于75 dB;站房主要构件可不考虑因列车荷载引发的疲劳问题。  相似文献   

13.
针对运营列车通过隧道时引起近接建筑物地面振动进行了现场测试,并对测试数据进行了功率谱、Z振级及1/3倍频程分析。在此基础上,利用有限元软件建立了围岩-隧道-轨道结构振动模型,对运营列车引起的建筑物振动进行了计算分析。结合实测与计算结果,对近接建筑物的振动特性进行了评价。结果表明:列车以速度300 km/h通过隧道时,地面振动功率谱主频白天集中在33.0 Hz左右,夜间集中在42.7 Hz左右,夜间的主频比白天大;地面各测点处Z振级的总体趋势是先波动式上升,再平缓波动,后逐渐波动式下降,地面Z振级主要集中在20~80 dB;1/3倍频程分频最大振级白天位于48.4~60.8 dB,夜间位于47.4~59.4 dB;列车通过隧道时基础处振动速度峰值整体呈波浪形分布,引起的地面振动速度小于0.045 mm/s,小于规范限值要求,对建筑物基础以及人体舒适度的影响较小;在缺乏大量实测结果的条件下,结合小样本实测结果,采用有限元计算结果进行振动响应评价具有一定的可行性。  相似文献   

14.
以全封闭声屏障为研究对象,分析CRH_2型动车组、C_(80)型货车轮轨动荷载作用下声屏障的振动响应。建立金属吸声板声屏障、混凝土声屏障与32 m箱梁耦合的有限元动力分析模型,分析列车作用在箱梁上的轮轨力。通过计算得到不同列车速度下声屏障的位移和加速度响应,分析动位移、振动加速度、频谱特性和总振级的变化规律。结果表明:轮轨动荷载作用下声屏障的竖向、横向位移很小,均在2 mm以内;动车组作用下声屏障的振动加速度峰值可达5 m/s~2;金属吸声板声屏障各考察点处的竖、横向振动加速度在各车速下均较混凝土声屏障大;声屏障振动加速度级在频率40~80 Hz出现第一个峰值(较大),在频率400~800 Hz出现次峰值(较小)。  相似文献   

15.
为研究地铁列车提速对减振垫浮置板轨道的振动特征的影响,对比分析地铁列车行车速度为80 km/h和120 km/h工况下减振垫浮置板轨道时域和频域的实测结果。分析结果表明:行车速度对减振垫浮置板轨道结构垂向位移的影响不大;行车速度为120 km/h的工况下钢轨、浮置板、隧道的振动加速度1/3倍频程的峰值较行车速度为80 km/h的工况下的峰值分别有6.2、2.8、0.5 dB的增大;分频段分析各测点振动加速度综合振级,结果显示:在0~20 Hz与20~80 Hz频段内,只有钢轨的振动加速度综合振级增长超过5%,浮置板与隧道振级变化均小于2.5%,在80~120 km/h速度范围内,行车速度的提高对减振垫浮置板轨道隧道振动的影响并不明显。  相似文献   

16.
更换减振扣件前后地铁运营引起地面振动的研究   总被引:2,自引:0,他引:2  
选择北京地铁5号线宋家庄—刘家窑区段,在更换减振扣件前后2次测试地铁正常运营引起的地面水平及垂向振动加速度,对其进行频谱分析;建立轨道—隧道—土层的三维有限元模型,利用实测数据,研究垂直于地铁线路方向不同距离的振动加速度响应规律。结果表明:地铁线路位于曲线段时,地面水平与垂向振动加速度峰值和有效值基本相等;在安装DTⅥ2扣件的轨道地段,地铁列车运营引起的地面主要振动频率为40~80 Hz,在安装Vanguard扣件的轨道地段为20~40 Hz,说明Vanguard扣件有较突出的减振效果;随着距地铁隧道中心线距离的增加,地面振动加速度响应表现出衰减的趋势,在离开隧道轴线一定距离处,存在地面振动加速度放大区,水平和垂向振动加速度放大区的位置有所不同。  相似文献   

17.
通过轮轨耦合以及ANSYS有限元仿真,研究分析了地铁3种典型轨道结构振动响应、频率、距隧道中心距离之间的关系。研究表明,速度响应方面,距隧道中心水平方向0~20 m范围浮置板减振效果最优,20~80 m范围弹性支承块最优,80~170 m范围弹性支承块和弹性扣件轨道较优;加速度响应方面,距隧道中心水平方向0~100 m范围浮置板减振效果最优,100~170 m范围弹性支承块和弹性扣件轨道较优;振动频率方面,0~1 Hz范围弹性扣件轨道减振效果略优,20~40 Hz范围弹性支承块略优,1~20 Hz和40~500 Hz范围浮置板减振效果最优。  相似文献   

18.
应用ABAQUS软件建立列车—轨道—隧道—土层的动力学模型,研究钢弹簧浮置板的减振效果.在地铁列车以20 m·s-1速度运行条件下,浮置板的振动加速度峰值(15m·s-2)远大于普通轨道;铺设浮置板后隧道拱顶和地表的振动加速度峰值分别为0.07和0.005m· s-2,远小于普通轨道.频域分析表明:浮置板的振动频率在400Hz以上频段衰减很大,而100Hz以内低频成分的振动能量明显增强;浮置板轨道对于隧道拱顶在400~800Hz、地表在20~80 Hz频段内的减振效果明显.1/3倍频程分析表明:浮置板的分频振级最大增量为22 dB(中心频率为10 Hz);铺设浮置板后隧道拱顶的最大减振量为18 dB(中心频率1 016 Hz),地表的分频最大减振量为6 dB(中心频率63 Hz).Z振级分析表明:铺设浮置板后隧道拱顶和地表处的减振量分别为24和25 dB,在25~80 Hz频段的减振效果最好;因浮置板自振频率处于20 Hz以下的低频范围,能够吸收中高频振动、放大自身低频振动,所以具有阻高频、放低频的减振特性.  相似文献   

19.
高速列车作用下板式轨道引起的地面振动   总被引:11,自引:1,他引:10  
根据波数域内分层大地波动方程的求解理论,建立高速列车作用下板式轨道—大地耦合振动分析模型。利用Fourier变换,在频率—波数域内求解振动微分方程,再通过Fourier逆变换得到大地表面的振动位移响应。通过算例分析列车运行速度对板式轨道周围地面振动的影响。结果表明:列车运行速度越高,线路周围地面的振动响应越大。当列车速度大于200 km.h-1时,路基表面位移的幅值随车速提高迅速增大;然而当列车速度增至350 km.h-1时,位移幅值最大值又出现了回落。距离板式轨道中心线越近,行车速度的变化对地面振幅的影响越显著。尤其当列车速度接近地基的Rayleigh波波速时,由于引发共振而使地面振动位移出现峰值。  相似文献   

20.
为研究轨道交通车辆经过高架桥时的动态特性,以弹性支承块式无砟轨道为例,基于车辆-轨道耦合动力学理论,建立了车辆-轨道-桥梁耦合系统的竖向振动矩阵方程,利用MATLAB软件编写了计算程序。数值算例验证了计算程序的可靠性。通过改变系统参数,探索了轨道不平顺、车辆速度和轨道结构竖向刚度对系统竖向振动响应的影响。结果表明:轨道振动频率分布在0~500 Hz范围内,以20 Hz以内的低频振动为主;桥梁振动频率分布在0~200Hz范围内,以一阶竖向弯曲振动为主;轨道不平顺所产生的轮轨高频冲击力可达轴重的3倍,是车辆-轨道-桥梁耦合系统重要激励源之一;轮轨力和轨道加速度响应对车速的变化敏感,车辆-轨道-桥梁耦合系统位移响应对车速的变化不敏感;扣件和支承块胶垫竖向刚度应根据设计要求在40~80 k N/mm之间进行合理匹配取值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号