首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
研究目的:由于不同的刚度分布,波形钢腹板预应力混凝土箱梁截面剪力滞效应与普通预应力混凝土箱梁截面存在较大差异,为研究单箱双室波形钢腹板预应力混凝土箱梁的剪力滞效应,借助有限元分析软件ANSYS建立单箱双室波形钢腹板预应力混凝土箱梁空间模型,分析两种典型荷载工况下典型截面的应力分布,得到典型截面的剪力滞系数,并与普通预应力混凝土箱形梁作比较,分析讨论7种几何参数变化条件下箱梁剪力滞系数的变化情况。研究结论:(1)采用波形钢腹板略增大了各断面的最大剪力滞系数;(2)对于顶板而言,中腹板的剪力滞系数大于边腹板,底板反之;(3)剪力滞系数的主要影响参数是宽跨比、承托长度、顶板厚度,横隔板数量对剪力滞系数的影响甚小;(4)该研究成果对波形钢腹板预应力混凝土箱梁设计及计算分析具有参考借鉴价值。  相似文献   

2.
研究目的:为了研究箱梁桥在预应力作用下的剪力滞效应,以承受预应力作用的简支箱梁为对象,基于能量变分法,结合预应力等效荷载法,建立了直线、折线和曲线布束方式的简支梁在预应力作用下的剪力滞效应解析解。针对算例简支箱梁,研究3种布束方式综合作用下箱梁的剪力滞效应,并和有限元板壳数值解进行对比分析。以高速铁路10种典型标准设计整孔简支箱梁为例,研究直线、折线和曲线布束下跨中部位应力最大点处的剪力滞系数。研究结论:通过研究得出:(1)通过本文解析方法与板壳有限元数值解的对比表明,本文解析方法可以有效计算简支梁在预应力作用下的剪力滞效应;(2)对既有高速铁路简支梁桥,直线布束在跨中引起的剪力滞效应最小、其次为曲线布束、折线布束最大;(3)本研究成果对预应力混凝土箱梁的预应力设计具有理论借鉴意义。  相似文献   

3.
为了明确不同荷载条件下单箱多室变宽度道岔连续箱梁桥的应力分布及剪力滞效应,首先采用数值方法,利用ANSYS建立考虑预应力以及各种荷载工况加载方式的三维实体单元模型,分析箱梁在不同荷载效应下应力分布和变形趋势;然后,选择箱梁顶底板不同部位16个应变测点,采用多通道数据采集仪分别同步实测满堂支架现浇、预应力张拉及成桥落架等施工阶段时箱梁应力,并与数值分析数据进行对比验证;在此基础上,利用数值模型对该单箱五室预应力混凝土道岔梁在列车活载作用下的横向和纵向剪力滞效应进行分析。研究表明,三维实体数值模型可得到不同荷载工况作用下单箱多室箱梁应力分布的精细结果,数值分析结果和应力实测数据都显示箱梁顶底板应力分布不均匀,有明显的剪力滞效应,且顶板剪力滞效应更显著;数值分析还显示,车辆布载方式影响剪力滞效应,剪力滞效应沿着纵桥向变化,剪力滞系数最大达1.074。研究结果表明,单箱多室箱梁设计中应充分考虑箱梁剪力滞效应影响,以确保桥梁结构设计安全。  相似文献   

4.
为了解高速铁路槽形连续梁拱桥拱梁固结段的真实应力状态及验证局部分析中边界条件表达的准确性,以济青高速铁路(66.5+142+66.5) m双线有砟轨道预应力混凝土连续槽形梁拱桥为工程背景,利用FEA有限元软件建立细化的空间实体有限元模型,分析中支点横截面空间效应,并对局部模型的边界条件模拟的正确性进行验证。分析表明:中支点截面应力呈现明显的空间不规律现象,恒载比活载剪力滞效应更为明显,局部位置如拱肋与主梁连接部位、主梁下缘支座处、横隔板进人孔倒角处应力集中,应适当加强配筋,其余部位应力均满足要求,通过验证局部模型的内力分布,确保实体模型应力结果的准确性,保证结构安全。  相似文献   

5.
为了研究考虑剪力滞效应的混凝土薄壁箱梁肋板厚度对箱梁截面正应力分布的影响,利用有限元软件建立不同肋板厚度的数值模型得到跨中上翼缘板沿横截面的剪力滞系数,对比分析薄壁箱梁不同肋板厚度下的剪力滞系数分布情况。结果表明:相同条件下考虑剪力滞效应情况的薄壁箱梁肋板越薄,横截面剪力滞系数越大,横截面应力越大;为了保证安全的前提下,薄壁箱梁肋板厚度取值应满足规范的最小值要求。  相似文献   

6.
为探究混凝土PK箱梁在节段预制拼装施工阶段的剪力滞效应,以石首长江公路大桥为工程背景,采用空间结构计算理论以及现场实测方法对模型计算结果进行验证,研究PK箱梁在自重作用,预应力张拉、提升与滑移不同阶段的剪力滞效应的变化规律,为类似工程提供理论支撑。研究结果表明:考虑空间预应力的PK箱梁结构模型计算结果与实测结果吻合较好,误差在6%~7%之间;自重作用时应力较小,但剪力滞效应最大,提升与滑移阶段的剪力滞效应相对较小,且沿箱梁截面呈非线性走势;张拉横向预应力越大,剪力滞系数曲线沿横桥向越趋于平缓,预应力对剪力滞的影响效果明显;预应力张拉量相等时,吊点与滑靴位置的改变是影响剪力滞效应的主要因素。建议在设计节段预制拼装施工方案时,对预应力张拉方法以及吊点与滑靴位置的设置予以充分考虑,控制箱梁剪力滞效应,保障施工阶段结构的安全性。  相似文献   

7.
为研究截面配筋后的箱梁剪力滞效应,采用能量变分法,建立箱梁剪力滞效应的分析方程,并推导出简支梁在集中荷载和均布荷载作用下考虑剪力滞效应的附加弯矩和挠度计算公式。结合铁路标准设计箱梁算例,分析了不同配筋率时的箱梁剪力滞效应。结果表明,截面配筋对箱梁剪力滞效应有一定的影响,随截面配筋率增大,截面剪力滞附加弯矩增大,挠度减小,剪力滞效应突出。对算例箱梁,考虑截面配筋后剪力滞附加弯矩增大可达298.37%,挠度减小可达15.98%,剪力滞系数增大可达1.36%。  相似文献   

8.
剪力铰是一种只传递剪力、不传递弯矩的构造,在铁路桥梁中首次成功应用于成昆线旧庄河1号桥。剪力铰的受力较为复杂,使用过程中其主要部件预应力粗钢筋发生了多次破断。本文分析了剪力铰“左右块体+竖向预应力粗钢筋”构造,进行了外观状态检查、桥面线形测量、三向相对位移测试和粗钢筋应力测试。结果表明:部分粗钢筋管道中长期存水,导致粗钢筋存在局部锈蚀的可能;剪力铰处的桥面下挠达到118 mm,列车通过时的冲击作用明显增大;剪力铰两侧最大竖向位移差达到0.64 mm,即粗钢筋力值差为59.6 kN,接近预应力螺纹钢筋容许疲劳力值,长期疲劳荷载作用下疲劳断裂的风险加剧;粗钢筋有效预应力均高于设计值,最大值高出100%(153 kN),但远小于其极限承载力668 kN,粗钢筋发生极限承载力破坏的可能性较小。结合影响剪力铰粗钢筋破断的因素,提出了剪力铰养护维修的指导建议。  相似文献   

9.
为研究不同支承形式对波形钢腹板预应力混凝土曲线箱梁剪力滞效应的影响,采用ANSYS软件建立单跨波形钢腹板曲线箱梁的有限元模型,在跨中集中荷载和全桥分布荷载作用下,分析不同支座布置形式下的剪力滞效应。研究结果表明:单跨波形钢腹板曲线箱梁在集中荷载下,4种支承的最大剪力滞系数均出现在跨中截面,从大到小依次为静定中心支承、静定偏心支承、超静定中心支承、超静定偏心支承。在分布荷载下,4种支承对应的跨中控制截面的剪力滞系数均在1.161左右,差异较小。  相似文献   

10.
预应力RPC箱梁剪力滞效应分析   总被引:5,自引:4,他引:1  
活性粉末混凝土(RPC)是一种具有超高强、高耐久性的新型高性能混凝土材料。用有限元法和能量变分法对预应力活性粉末混凝土简支箱梁的剪力滞效应进行研究。研究结果表明:RPC箱梁由于材料特性的改变使得剪力滞效应比同等条件下普通混凝土箱梁的大,在设计中应特别注意。各工况条件下的剪力滞效应从跨中到梁端部均逐渐增大,正应力在跨中附近比较接近梁理论计算结果,但在八分之一截面处相差较大,甚至超出初等梁理论计算值约20%;箱梁同一位置的剪力滞效应随荷载形式变化有不同的规律;预应力对剪力滞效应的影响不大,仅在梁端部区段略有增大,这是受梁端部预应力的影响。建议在设计时,满足梁端部抗裂设计的同时,抗弯也要留有一定的富余。  相似文献   

11.
首先对剪力滞效应的原理进行了综述,理清了概念,运用有限元软件ANSYS对某薄壁箱梁的剪力滞效应进行数值分析,与相关文献数值解、实测值和理论值进行对比,验证了模型的正确性。然后通过分析受弯箱梁本身受力特点,得到各影响因素对于其剪力滞系数的影响,并总结剪力滞系数沿跨径纵向分布的规律。再进一步分析了仅轴力、纯弯作用下剪力滞系数的纵向分布和翼缘板剪力流的关系,然后结合工程实践中的恒载、活载和预应力三者进行对比分析,得出全预应力结构有均衡剪力滞系数纵向分布及降低峰值的优点。最后对箱梁进入塑性状态后的剪力滞效应进行了研究并得出了相应结论,目的在于研究预应力作用下箱梁剪力滞特点及塑性状态箱梁剪力滞的变化规律,为工程实践提供一定理论基础。  相似文献   

12.
选取二次抛物线作为剪力滞翘曲位移函数,用能量变分法导出双室箱梁剪力滞控制微分方程。通过分别建立单元两端支点处和梁轴处位移之间的变换关系,考虑弯曲、约束扭转及剪力滞变形之间的耦合关系,提出一种适用于斜交支承连续箱梁剪力滞效应分析的梁段单元。对一斜交支承3跨连续双室箱梁模型的计算值与ANSYS壳单元计算值和实测值均吻合良好,证明该单元是可靠的。详细分析斜交支承角度变化对斜交支承3跨连续箱梁剪力滞效应及内力分布的影响,结果表明:与常规支承箱梁相比,斜交支承箱梁的剪力滞效应更为显著;控制截面的弯矩和剪滞力矩均随着斜交支承角度增大而减小,但双力矩却随斜交支承角度增大而增大;荷载横向作用位置对双力矩的分布有显著影响;剪力滞和约束扭转引起的翘曲应力在总应力中占较大比例,设计中必须认真对待。  相似文献   

13.
考虑混凝土顶板和钢底板不同的模量,结合变分法推导波形钢腹板-钢底板-混凝土顶板(简称CSWSB)组合箱梁剪力滞效应的控制微分方程组和边界条件,建立CSWSB简支组合箱梁跨中集中荷载、均布荷载作用下剪力滞系数和有效分布宽度的计算公式,采用模型试验梁对2种荷载工况下单箱单室组合箱梁的剪力滞效应和有效分布宽度进行分析。研究结果表明:简支组合箱梁在集中荷载和均布荷载作用下剪力滞系数表达式正确,集中荷载作用下的剪力滞效应比均布荷载作用下的剪力滞效应明显,上翼缘板的剪力滞效应比下翼缘板的剪力滞效应明显;根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》计算CSWSB组合箱梁翼板有效分布宽度时,与理论计算局部差值达到了10%,富余量较小;与《钢-混凝土组合桥梁设计规范》计算CSWSB组合箱梁翼板有效分布宽度对比,整体差值率偏大,设计中应给予重视。  相似文献   

14.
基于波纹钢腹板箱梁特点,利用变分原理法,推导考虑箱梁剪力滞和剪切变形影响的波纹钢腹板箱梁挠度计算公式.结合室内模型试验和有限元分析,对该公式的有效性进行验证,并分析各影响因素对波纹钢腹板箱梁挠度的影响程度.分析结果表明:该公式的计算结果与试验和有限元分析的结果具有较高的一致性,表明该公式可用于波纹钢腹板箱梁设计和施工中的挠度计算,剪力滞对正应力分布有影响,剪切变形对正应力分布没有影响;与初等梁理论的计算结果比较,剪力滞效应和剪切变形分别增大波纹钢腹板箱梁挠度1.3%和44.7%.因此在实际计算波纹钢腹板箱梁挠度时,不可忽略剪力滞和剪切变形的影响.  相似文献   

15.
以一座大跨度曲线矮塔斜拉桥为研究对象,分析剪力滞、箱梁畸变、扭转等空间效应对梁体应力状态的影响。分析结果表明:考虑空间效应后,在移动荷载作用下,顶板拉应力和底板压应力增大,最大增幅分别为1.20 MPa和1.29 MPa,顶板压应力和底板拉应力减小,最大减幅分别为0.95 MPa和1.35 MPa;在恒载作用下,顶板压应力减小,最大减小2.16 MPa,底板压应力增大,最大增加3.27 MPa。在此基础上分析了半横隔板箱梁在斜拉索锚固处的剪力分配问题,结果表明,剪力由横隔板和翼缘板共同承担,且横隔板承担剪力不超过50%,可按照横隔板和翼缘板共同抗剪进行设计。  相似文献   

16.
为研究考虑截面配筋后的混凝土箱梁在开裂状态下的剪力滞效应,基于变分原理建立了考虑截面配筋率的箱梁剪力滞效应分析的控制微分方程,并推导出箱梁开裂前后的微分方程表达式。结合具体箱梁算例,分析了2种不同配筋率的箱梁在不同荷载作用下开裂前后的剪力滞效应。结果表明:集中荷载或均布荷载作用下,初始开裂截面及集中荷载作用截面剪力滞效应均发生突变;配筋率对开裂状态箱梁的剪力滞效应的影响大于其对于未开裂状态箱梁的影响;2种状态下最大影响位置均为初始开裂截面,剪力滞系数变化最大可达10.31%。  相似文献   

17.
钢-混凝土混合结构在大跨度连续刚构桥中的应用   总被引:4,自引:0,他引:4  
重庆石板坡公路长江大桥采用填充混凝土后板式钢—混凝土接头。在轴力、弯矩和剪力的作用下,钢—混凝土接头处将产生轴向压应力、拉应力和剪应力。压应力由承压板及PBL剪力键共同传递,拉应力、剪应力主要由PBL剪力键传递。计算得到钢—混凝土接头的最不利荷载组合内力。在钢—混凝土接头附近截取18m长的1个梁段,将混凝土与贯穿钢筋进行耦合、贯穿钢筋与PBL板进行耦合,采用实体单元、板单元和梁单元,建立钢—混凝土接头有限元模型,利用有限元软件ANSYS进行仿真分析,得到钢—混凝土接头各部分的应力分布。结果表明:结构各构件在设计荷载下并未出现超出材料强度的应力峰值;剪力主要靠腹板上的PBL剪力键传递;有效的预应力体系是钢—混凝土接头可靠性的根本保证。  相似文献   

18.
扁平超宽箱梁桥由于具有较大的宽跨比,其受力性能呈现明显的空间效应,通常的单梁模型计算已不能满足设计的精度要求,主要体现在宽箱梁各腹板纵向受力的差异性以及明显的剪力滞效应,同时由于大宽跨比使得横向预应力的作用不仅增加了顶板的压应力,也使得整体箱梁截面下缘出现拉应力,造成边腹板底部纵向裂缝,这些都给宽箱梁的设计带来了不利。因此为研究宽箱梁的空间效应,本文运用ANSYS有限元软件建立了全桥实体模型,计算了各腹板纵向受力差异及剪力滞效应,以及横向预应力对箱梁横向受力的影响,得到了一些有益的结论,为设计人员提供一定的参考。  相似文献   

19.
以刚果已建成的一座混凝土曲线斜拉桥为实例,通过ANSYS建立全桥有限元模型,研究在施工过程中及成桥状态下π形主梁顶板的正应力分布及剪力滞效应的变化情况。同时,通过全桥模型试验验证曲线斜拉桥在施工过程中剪力滞效应的变化规律。结果表明:π形主梁的曲线内侧和外侧的剪力滞系数差别较大,甚至出现内侧边肋为正剪力滞效应、外侧边肋为负剪力滞效应的情况;随着施工的进行,各个截面的剪力滞效应越来越明显。  相似文献   

20.
通过对3种翼板分设不同的纵向位移差函数,并假定纵向位移沿横向分布规律为三次抛物线,计算外力势能时考虑荷载横向作用位置的影响,然后根据能量变分法,分别推导出集中、均布荷载横向变位时简支梁的应力和剪滞系数公式,本文方法计算结果与有限元模型结果吻合良好,验证了本文所作假定和理论推导的正确性。荷载横向变位时剪滞系数沿纵向的变化曲线表明:荷载由腹板顶部向顶板中心移动时,顶板受影响最明显,且由负剪滞效应变为正剪滞效应,腹板则相反;均布荷载作用下,越靠近支点剪滞效应越大,集中力作用下,作用位置局部区域内剪滞效应影响较大,其他区域几乎无影响,荷载作用点由腹板靠近顶板中心时,剪滞影响范围逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号