首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以广深港(广州—深圳—香港)高速铁路光明城高架段以及武广(武汉—广州)高速铁路金沙洲隧道段为工程背景,开展高速铁路振源及环境振动现场测试,研究其振源特点和环境振动衰减规律。试验结果表明:高速列车诱发高架曲线段振源振动强度明显高于直线段,桥面Z振级远高于隧道壁Z振级;高架段断面环境振动Z振级高于隧道段断面最大达33 dB;环境振动Z振级随距轨道中心线距离增加而逐渐减小,但距离15 m以后,高架段和隧道段衰减规律略有不同;环境振动主频集中在20~80 Hz,随着距轨道中心线距离增加,环境振动高频成分衰减速度大于低频成分;对于隧道而言,其埋深越大,环境振动主频越低。研究成果对高速铁路、市域快速轨道交通设计具有参考价值。  相似文献   

2.
为了研究高速铁路列车在路基段运行时引起的周边环境地面上的竖向振动特性和传播规律,进行现场试验和数值分析。实测结果表明:高速铁路路基段周边环境地面不同距离测点的Z振级均小于78 d B,振动并没有随距离衰减,只是在距离外轨30~60 m范围内有减弱;距离线路外轨30 m外的环境振动的频谱主峰频率以小于10 Hz的低频为主;振动频谱中并没有显现出高频振动衰减快、低频振动衰减慢的规律。基于FLAC3D的数值分析结果与实测值吻合良好,验证了模型的合理性,并分析群桩加固区对振动的影响,结果表明:在路基段采用群桩基础对地基进行加固,可有效降低高速铁路列车运行对路基段周边环境振动的影响。  相似文献   

3.
为缓解地铁列车出站加速过程引起的振动对车站内工作人员及上盖物业居民的影响,首先应探明环境振动传递特性,通过对某城市地铁车站的3个隧道内矩形断面及隧道上方地面进行现场实测,从时域和频域的角度分析地铁列车出站加速过程对振动源强及环境振动传递特性的影响。研究结果表明:(1)地铁列车出站的加速过程中,引起的钢轨振动响应随车速提高而增大,但是道床和隧道壁的加速度峰值在行车速度为40 km/h断面处最大,主要原因是车辆加速初段引入的低频冲击;(2)地面和隧道的振动主频都在63 Hz附近,说明车站结构可以有效传递该频段的振动,且车速对该主频没有影响;(3)对于地铁车站的上部土体,振动在地面横向传递过程中存在放大区,在设计地铁隧道上方地面建筑物布局时,需重视该效应;(4)本次测试的车站区间,隧道壁源强到地表的衰减约为5 dB,小于区间的衰减,主要原因是地铁车站结构对振动的衰减要弱于土体,考虑到地铁车辆在车站边界已经达到了较高速度,因此车站附近的环境振动问题需要更加予以重视。  相似文献   

4.
地铁运营所产的振动噪声问题一直是其发展过程中亟待解决的难题,不同减振措施、不同地质条件下轨道结构产生的振动波传播及衰减规律也存在较大差异,为探究以富水砂卵石为主的地铁不同减振轨道结构源强及振动随距离衰减的特性,文章对成都地铁GJ-Ⅲ减振扣件、钢弹簧浮置板、一般轨道结构和浮轨式扣件4种轨道结构形式隧道壁振动源强和地面振动响应进行现场同步测试,并从频域、时频域及地面Z振级等方面对获得的数据进行分析。结果表明:GJ-Ⅲ减振扣件、浮轨式扣件和钢弹簧浮置板3种减振轨道形式均可有效降低隧道壁源强和地面振动,三者减振效果钢弹簧浮置板大于浮轨式扣件大于GJ-Ⅲ减振扣件;环境振动的主频在经过土体介质后一般不会发生改变,轨道结构形式是决定环境振动频域分布的主要因素,地面环境振动随传播距离的衰减主要体现在各组断面的主频上而加强区测点的频域加强频带为50~80 Hz;4 Hz以下的低频振动和50 Hz以上的高频振动经过土层介质后均有较为明显的衰减。  相似文献   

5.
根据HJ 453—2018《环境影响评价技术导则城市轨道交通》,为提升振动环境影响评价的科学性,以西安地铁4号线为例,获得其由地铁运行产生的振动源强和振动环境影响实测值。在已运营地铁线路的区间隧道和地面布设监测点位,根据经验公式对地铁运营产生的振动环境影响进行预测。基于振动环境影响实测值与预测值的对比分析结果,通过回归分析获得地铁振动环境距离衰减预测的相关参数。研究结果表明:当地质条件为冲积、洪积平原区的冲积地层,线路条件为直线段整体道床与圆型隧道断面,列车类型为6节编组B型车,列车运行速度为65 km/h的工况条件下,振动源强为78.8 dB,环境振动影响实测值比预测值小约0.8~4.9 dB;距外轨中心线5~10 m范围内,振动环境影响实测衰减值比预测衰减值大约4.3 dB;由回归分析法获得的地铁振动距离衰减预测参数a=-6.458、b=-0.074、c=4.410。  相似文献   

6.
高速铁路环境振动特性研究   总被引:3,自引:0,他引:3  
在对我国高速铁路环境振动实测的基础上,分析了我国高速铁路环境振动特性。实测分析结果表明:对于350km/h客运专线,高速动车组运行时铁路环境振动主频出现在40Hz左右;对于250km/h客运专线,高速动车组运行时铁路环境振动主频出现在25Hz左右;货物列车运行所产生的铁路环境振动,其主频大多出现在12.5Hz左右。地面环境振动传播规律为近场范围内距线路距离加倍,环境振动衰减2~3dB。列车引起的地面振动随车速的提高而增大,与日本新干线的桥梁及其周围地面的振动进行的测试结果基本一致。  相似文献   

7.
为评估小半径曲线浮置板轨道段地铁列车下穿振动敏感建筑造成的环境振动影响,对无锡地铁2号线近距离下穿一处民居进行现场测试,从加速度时程、频谱、有效值、1/3倍频程谱和最大Z振级(VLz,max)方面进行分析,探究民居不同楼层及不同平面位置处的振动响应规律。研究结果表明:(1)同楼层中远离线路的楼层中央加速度响应时程峰值明显大于靠近线路的楼层边缘处,而不同楼层的同一平面位置处,2楼加速度响应明显大于1楼;(2)由于浮置板轨道一阶固有频率及轮轨共振频率的影响,振源及民居不同测点加速度频谱峰值均出现在7 Hz及80 Hz附近;(3)不同楼层及不同层内平面位置的最大Z振级量值存在一定差异,各测点的平均最大Z振级在53.97~57.10 dB之间,小于规范限值67 dB。浮置板轨道在该小半径曲线段对地铁振动控制作用良好。  相似文献   

8.
应用ABAQUS软件建立列车—轨道—隧道—土层的动力学模型,研究钢弹簧浮置板的减振效果.在地铁列车以20 m·s-1速度运行条件下,浮置板的振动加速度峰值(15m·s-2)远大于普通轨道;铺设浮置板后隧道拱顶和地表的振动加速度峰值分别为0.07和0.005m· s-2,远小于普通轨道.频域分析表明:浮置板的振动频率在400Hz以上频段衰减很大,而100Hz以内低频成分的振动能量明显增强;浮置板轨道对于隧道拱顶在400~800Hz、地表在20~80 Hz频段内的减振效果明显.1/3倍频程分析表明:浮置板的分频振级最大增量为22 dB(中心频率为10 Hz);铺设浮置板后隧道拱顶的最大减振量为18 dB(中心频率1 016 Hz),地表的分频最大减振量为6 dB(中心频率63 Hz).Z振级分析表明:铺设浮置板后隧道拱顶和地表处的减振量分别为24和25 dB,在25~80 Hz频段的减振效果最好;因浮置板自振频率处于20 Hz以下的低频范围,能够吸收中高频振动、放大自身低频振动,所以具有阻高频、放低频的减振特性.  相似文献   

9.
为研究高速铁路路堑在高速列车荷载下的地面垂向振动随距离传播规律,对宝兰高铁路堑段地面垂向振动进行现场试验,对现场试验的数据从时域和频域两个方面进行分析揭示地面垂向振动加速度响应特征。结果表明,路堑垂向振动加速度在距离线路中心线12.5~40 m总体呈衰减趋势,靠近线路中心线处12.5~20 m处垂向振动加速度衰减较快,较远处20~40 m处衰减速度较慢。地面垂向振动加速度在各测点处由60 Hz及100 Hz附近的频率成分主导,随着距离的增大,110 Hz左右的高频成分衰减很快,到了距线路中心线20~40 m,振动加速度在60 Hz左右的频率成分占优。依据现场工况,建立了列车-轨道-路堑-地基数值分析模型,并通过数值试验的方法,设置不同的场地速度特性,分析不同场地条件对路堑振动响应的影响。数值分析表明,场地速度特性(覆盖层与下卧层模量比、覆盖层厚度)是影响地面振动剧烈程度的重要因素,地基覆盖层与下卧层模量比越大,地面振动越强烈,模量比一定,覆盖层厚度越小,地面振动越大。  相似文献   

10.
对京沪高速铁路丹昆特大桥桥墩及周围自由场地进行振动测试,研究运行速度300 km/h的高速列车通过高架简支梁桥的环境振动水平及振动衰减规律。研究表明,高铁列车运行引起的地面振动在桥墩附近10 m范围内的近地场振动衰减较快,且存在振动反弹区;40 m以外的远地场振动衰减较为平缓。从1/3倍频程分析,地面竖向振动的优势频段为25~60 Hz,但该频段振动衰减较快;20 Hz以下的分频振动衰减较慢,且通常低于一般减隔振措施的减振频率范围,应引起足够重视。高速铁路高架桥引起的周围环境振动整体较小,在距离轨道中心线40 m以外,地面的竖向加速度满足特殊住宅区的振动要求。研究成果可为高速铁路高架桥减隔振设计及环境振动评估提供数据参考。  相似文献   

11.
为探究黏弹阻尼道床阻尼厚度对隧道及地表振动衰减特性的影响,为工程设计提供理论支持。利用ANSYS建立土体-隧道-道床平面有限元模型,分析在5~25 Hz频率荷载的作用下,整体道床和黏弹阻尼道床在隧道结构中的振动响应,并分析这两种道床下地表距离隧道中心线不同距离的振动加速度的衰减特性。结果表明:荷载频率小于10 Hz时,在地表距离隧道中心25 m左右,振动有明显的放大区域;荷载频率为10~20 Hz,振动加速度随道床阻尼层厚度降低,阻尼层越厚振动衰减越明显;随着黏弹阻尼道床阻尼层厚度增加,隧道衬砌底部振动加速度有效值依次降低,隧道壁竖直方向振动衰减更加明显,阻尼层每增加2 mm,振级降低1~4 d B。  相似文献   

12.
基于某城市地铁的异型盾构隧道,采用实际场地传递函数标定数值模型的方法,对异型盾构隧道地铁振动问题进行了研究.研究结果表明:异型盾构隧道埋深增加量与Z振级衰减量不是线性关系;单从地铁环境振动控制角度而言,存在1个最佳经济埋深,本算例的最佳经济埋深为15~20 m;地铁列车运行引起的80 Hz以上频段的振动衰减非常快,传至地面时振动峰值频率为63 Hz;若采用钢弹簧浮置板进行隔振,隧道正上方地面位置Z计权总振级可以减小14.6 dB.  相似文献   

13.
以南昌地铁1号线的某标段工程为研究背景,建立曲线地段的轨道—隧道—大地三维有限元模型,同时考虑竖向和水平向轮轨作用力的影响,计算得到了地铁列车通过曲线时诱发的环境振动。计算结果表明:当曲线的半径一定时,地铁在曲线地段运行引起的钢轨、隧道壁和地面振动响应均与列车行驶速度密切相关;曲线地段地面水平向振动加速度级要大于竖向,平均高出5 d B;水平向和竖向振动加速度级均表现出随着与隧道中心线间距离的增加而呈波动性衰减特性,频率越高振动加速度级衰减的速度越快;环境振动在衰减过程中都会出现放大区,竖向和水平向的振动放大区出现的位置有所不同,但振动放大区的主频差别不大。  相似文献   

14.
地铁振动源强是环境振动影响评价中的关键因素。为消除环境振动影响评价中应用单次振动测试结果作为源强数据的局限性和偶然性,基于NI cRIO硬件和SystemLink软件架构,搭建分布式监测系统对上海地铁某线路隧道振动源强进行长期在线监测。采用不同频率计权曲线对监测的振源振动加速度进行振级计算和统计分析。结果表明,在监测点位边界条件下,振源振级约为71 dB。与采用W计权曲线相比,Wk计权振级平均增加量约为3.2 dB。对地铁振源的长期监测实践表明,该振源在线监测系统从功能和性能上能够满足轨道交通现场部署需求,并具有很好的可靠性和扩展性。  相似文献   

15.
针对运营列车通过隧道时引起近接建筑物地面振动进行了现场测试,并对测试数据进行了功率谱、Z振级及1/3倍频程分析。在此基础上,利用有限元软件建立了围岩-隧道-轨道结构振动模型,对运营列车引起的建筑物振动进行了计算分析。结合实测与计算结果,对近接建筑物的振动特性进行了评价。结果表明:列车以速度300 km/h通过隧道时,地面振动功率谱主频白天集中在33.0 Hz左右,夜间集中在42.7 Hz左右,夜间的主频比白天大;地面各测点处Z振级的总体趋势是先波动式上升,再平缓波动,后逐渐波动式下降,地面Z振级主要集中在20~80 dB;1/3倍频程分频最大振级白天位于48.4~60.8 dB,夜间位于47.4~59.4 dB;列车通过隧道时基础处振动速度峰值整体呈波浪形分布,引起的地面振动速度小于0.045 mm/s,小于规范限值要求,对建筑物基础以及人体舒适度的影响较小;在缺乏大量实测结果的条件下,结合小样本实测结果,采用有限元计算结果进行振动响应评价具有一定的可行性。  相似文献   

16.
研究目的:地铁车辆段具有道岔和轨道接头多、曲线半径小、列车行车速度低等特点,其轨道结构的减振设计一般参照地铁正线,实际减振特性尚不明确。为掌握双层非线性扣件在车辆段内轨道道岔运用效果,对车辆段内减振道岔进行试验研究。研究结论:(1)双层非线性减振扣件能够减小钢轨传至扣件减振层以下的道床和盖板地面处振动,但扣件减振层以上的钢轨处振动显著增大;车速20 km/h时,辙叉处道床和盖板地面分别衰减6.6 dB和4.1 dB,钢轨处增大8.6 dB;(2)采用双层非线性扣件后,钢轨振动在大部分频段范围都增大,其中在10~20 Hz最为显著;道床在60~400 Hz之间衰减比较明显;盖板地面处衰减主要在20~60 Hz之间,但在5 Hz和10 Hz附近出现一定的放大;(3)减振道岔处钢轨-道床传递损失明显大于普通道岔,振动从钢轨传至道床处时,在1 000 Hz范围内都发生了衰减,其中在20 Hz以内衰减最为显著,衰减量在35 dB以上;(4)本研究成果可应用于铁道工程减振设计领域。  相似文献   

17.
采用嵌入式环境振动智能监测系统,获得了紧邻地铁车站的地下商业建筑楼板铅垂向加速度时程谱与傅里叶谱。对优势频率振动能量衰减规律进行了拟合分析,获得了二次振动影响范围;通过铅垂向Z振级计算,对该地下建筑环境振动状况作出了评价,并给出了振级随距离衰减关系的数学模型。研究成果可为类似工程提供参考依据。  相似文献   

18.
为了研究单跨双线铁路曲线桥梁车桥耦合振动特性,建立车桥耦合振动模型,对列车通过单跨曲线桥(半径为600 m)内线和外线时,各板件的振动情况及影响最大的主频进行仿真计算,通过对比分析,得出与单跨直线桥的振动特性差异,为后期的单跨曲线桥结构减振处理及连续曲线桥梁(半径为600 m)研究提供理论参考。结果表明:相同条件下,顶板跨中结构位移方面,曲线桥(外线行驶)>曲线桥(内线行驶)>直线桥。顶板振动加速度方面,曲线桥(外线行驶)>曲线桥(内线行驶)>直线桥。但是在两侧板、底板振动加速度方面,曲线桥(内线行驶)>曲线桥(外线行驶)>直线桥。相比直线桥,曲线桥产生的低频振动更大,振动加速度对应的主频也较多,引起的低频噪声也更大。由于横向力的影响,桥梁结构稳定性还会受到一定的影响。  相似文献   

19.
在地铁区间为小半径曲线、地面无干扰振源并可以布置高密度测点的珍贵测试条件下,采用高灵敏度数据采集与分析系统,对北京地铁某曲线段进行地面振动测试。根据测试数据,研究地铁列车通过曲线段时引起地面振动加速度的时域和频域内传播规律。结果表明:在距离隧道中心线100m范围之内,地铁运营引起地面振动加速度的时程峰值主要在10-2 m·s-2量级,远大于背景振动下的10-4 m·s-2量级;在距离隧道中心线50m范围之内,水平振动强度是竖向振动强度的2~4倍,建议在涉及曲线段地铁的环评中应同时考虑竖向振动和水平振动的影响;水平振动加速度的主要频率成分为30~120Hz,建议在关于曲线段地铁的试验、测试和模拟中应选取较宽的频率分析范围;地面振动加速度频谱幅值随着与隧道中心线间距离的增加而呈波动性衰减。  相似文献   

20.
爆破地震波主频率的试验研究   总被引:3,自引:0,他引:3  
研究目的:振动主频率是各国爆破地震波研究工作者最关注的问题之一,它对建筑物的破坏结果有明显的影响,对其进行深入研究具有非常重要的现实意义.研究发现爆破地震波主频率的变化规律,与同段起爆的比例药量和测试点到爆区的距离两者之间的密切关系是本试验的目的.研究结论:本文根据地震波在黏弹性介质中的传播理论,提出了爆破振动频率与主要影响因素(药量和距离)之间的函数关系,并对深圳美视电厂实测爆破振动数据进行回归分析,得到了特定爆破条件下主振频率的预测公式,为爆破振动频率衰减规律的研究和对类似爆破工程进行主频率预测提供了理论和实际依据.研究发现,爆破振动主振频率f随药量Q和距离R的增大而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号