首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研究目的:扣件是地铁道岔关键传力部件,其纵向阻力对道岔各钢轨的受力与位移有着重要影响。为明确不同扣件轨下垫板、不同纵向阻力下地铁道岔的纵向力学特性,对其扣件进行试验及数值模拟分析。研究结论:(1)相比橡胶垫板,采用聚酯垫板时,道岔基本轨纵向位移减小13%以上,尖轨纵向位移减小2%左右,道岔各钢轨纵向受力变化不大;(2)随着扣件纵向刚度的增加,道岔结构的纵向位移和基本轨纵向受力逐渐减小,虽然导轨温度力略有增大,但增幅很小,不会影响结构安全性;(3)在地铁道岔中采用聚酯垫板并适当增大扣件纵向刚度是合理的优化方向;(4)本研究成果可用于地铁道岔扣件轨下垫板选型以及阻力优化设计。  相似文献   

2.
大跨桥梁端处的小阻力扣件轨下橡胶胶垫滑出现象较为普遍,为确定轨下胶垫滑出后扣件纵向阻力值及其变化规律,以客运专线无砟轨道常用的WJ-8扣件为例,开展不同轨下胶垫滑出量条件下的扣件纵向阻力试验,测试5种不同轨下胶垫滑出量时扣件纵向阻力—位移关系;采用最小二乘法对试验数据进行曲线拟合,得出5种不同轨下胶垫滑出量时扣件纵向阻力双线性表达式。研究结果表明:随着轨下胶垫滑出量的增加,扣件纵向阻力值减小,胶垫滑出量在60 mm以内时,扣件纵向阻力受胶垫滑出量影响明显,当胶垫滑出量大于60 mm后,扣件纵向阻力变化不大。  相似文献   

3.
为得到采用聚四氟乙烯胶垫的WJ-7型扣件纵向阻力特性,在不同工况下对扣件纵向阻力进行试验测试,并建立桥上CRTSI型板式无砟轨道无缝线路计算模型,分析采用聚四氟乙烯胶垫扣件系统在桥上无缝线路的使用性能。研究结果表明:对比普通胶垫,WJ-7型扣件采用聚四氟乙烯胶垫可以显著降低扣件纵向阻力,但容易发生胶垫窜出现象,将聚四氟乙烯胶垫与普通胶垫作黏结处理后对其纵向阻力影响很小;扣件纵向阻力随聚四氟乙烯胶垫厚度增大而减小;轨底作除锈处理对采用普通轨下胶垫与复合胶垫的扣件系统纵向阻力影响较大,对采用聚四氟乙烯胶垫扣件系统纵向阻力影响很小;与采用复合胶垫相比,扣件系统采用聚四氟乙烯胶垫时钢轨附加力及纵向位移会略微增大,当胶垫窜出时,在桥端2块轨道板采用聚四氟乙烯胶垫可明显减小钢轨附加力及纵向位移,并显著降低凸型挡台承受的纵向力。  相似文献   

4.
研究目的:为研究不同类型单元式无砟轨道无缝线路在大跨桥上的适应性,本文建立无缝线路-无砟轨道-桥梁空间耦合分析模型,对温度荷载作用下CRTSⅠ型和CRTSⅢ型板式无砟轨道各层纵向受力与变形、层间错动位移以及限位结构受力进行对比分析,并对运营过程中可能出现的扣件纵向阻力增加对两种无砟轨道在大跨桥上的适应性进行比较。研究结论:(1)两种无砟轨道无缝线路在连续梁端处受力与变形最大,但二者之间的差异较小;(2)扣件纵向阻力的增加将带来连续梁端位置处无缝线路受力增加,变形量减小;(3)CRTSⅢ型板式无砟轨道层间限位刚度大于CRTSⅠ型板式无砟轨道,因此扣件纵向阻力增加导致的CRTSⅠ型板式无砟轨道层间错动位移增加更加明显;(4)梁端限位结构在升降温过程中纵向受剪明显,其中CRTSⅠ型板式无砟轨道梁端半圆形凸台因单侧承力,纵向剪切效应更加显著,且随桥上扣件纵向阻力的增加而急速增加;(5)总体看来,两种无砟轨道的选用对大跨桥上无缝线路设计的影响基本无差异,但在轨道纵向几何形位保持以及大跨梁端限位结构受力方面,CRTSⅢ型板式无砟轨道表现出了较好的适应性;(6)本研究成果可为今后大跨度桥上板式无砟轨道的选型提供理论指导。  相似文献   

5.
扣件阻力是无缝线路的关键参数。为研究竖向荷载和弹条扣压力(扭矩)对扣件纵向阻力的影响,以WJ-8型扣件为研究对象,开展不同竖向荷载和扭矩下扣件纵向阻力-位移试验,得到不同工况下扣件纵向阻力-位移变化特征。试验结果表明:(1)扣件滑移之前,扣件纵向阻力-位移关系受竖向荷载的影响不显著;(2)不同竖向荷载和扭矩下扣件纵向阻力-位移关系可用幂指函数进行拟合;(3)扣件滑移阻力随竖向荷载的增加而线性递增,且竖向荷载越大,扣件滑移阻力随扭矩的增加而增加的幅度减小;(4)不同工况下扣件纵向阻力-位移曲线存在滞回效应特性,滞回曲线可采用幂指数型函数拟合得到。  相似文献   

6.
研究目的:桥上无缝线路受力比较复杂,桥梁、轨道结构的受力变形成为广泛关注的问题。为研究列车荷载作用下桥上轨道结构的受力变形规律及影响因素,根据多跨简支梁桥上单元板式无砟轨道无缝线路的结构特点,基于有限元法建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,计算列车荷载作用下桥上轨道结构的挠曲力与位移,并分析扣件纵向阻力、墩台顶固定支座纵向水平线刚度以及桥梁跨数等因素对挠曲受力与变形的影响规律。研究结论:(1)在列车荷载作用下,钢轨挠曲拉力及压力最大值分别出现在左侧桥台固定端与最后一跨跨中位置,钢轨位移呈先增后减的趋势,并在两侧路基段逐渐减小至零;(2)采用小阻力扣件可明显降低钢轨及轨道结构的受力,但同时会增加轨板相对位移,需要重点关注钢轨在桥台处的爬行;(3)采用较大纵向水平线刚度的低墩桥对列车荷载作用下桥上轨道结构纵向位移而言是不利的;(4)随着桥梁跨数的增加,轨道结构的纵向力与位移也不断增大,在6跨之前增幅明显,6跨之后增幅明显放缓并逐渐趋于平稳;(5)本研究成果对桥上CRTSⅠ型板式无砟轨道的设计及结构安全性具有参考价值。  相似文献   

7.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

8.
研究目的:桥墩纵向刚度合理限值是铁路桥梁设计和轨道设计的关键参数,本文考虑桥上板式无砟轨道多层结构间的非线性相互作用关系,建立简支梁桥-无砟轨道-无缝线路空间耦合模型,分析桥墩纵向刚度对不同跨度简支梁桥上无砟轨道无缝线路纵向力学特性的影响,提出不同跨度简支梁桥的桥墩纵向刚度合理限值。研究结论:(1)简支梁跨度L≤64 m时,桥墩纵向刚度的控制指标为梁轨相对位移值;跨度超过64 m后,钢轨强度成为桥墩纵向刚度的控制指标;(2)铺设常阻力扣件时,32 m、48 m、64 m、80 m和96 m简支梁桥墩纵向刚度限值分别为210 k N/cm、500 k N/cm、700 k N/cm、1 500 k N/cm和2 000 k N/cm;(3)综合考虑结构安全性和工程经济性,对于80 m和96 m简支梁桥,可通过全桥铺设小阻力扣件来大幅度降低桥墩纵向刚度;(4)本研究成果可用于指导无砟轨道简支梁桥的桥墩设计。  相似文献   

9.
为满足钢桁梁明桥面板式无砟轨道用扣件弹性和轨距调整量的要求,研发了MQ-2型扣件。该扣件采用无挡肩、弹性分开式结构;轨下垫板静刚度设计值为(100±10)kN/mm,轨距调整量设计值为-8~+8 mm,钢轨调高量设计值为-4~+20 mm;通过更换不同类型的弹条、轨距块和轨下垫板,扣件可实现三种钢轨纵向阻力,以满足不同工况无缝线路设计需求。经室内试验,该扣件的轨下垫板静刚度、动静刚度比、疲劳后静刚度变化率均满足设计要求;扣件轨距变化量、组装静刚度变化率均满足规范要求;钢轨纵向阻力、预埋套管抗拔力、绝缘性能的测试值均满足设计要求。该扣件已在广州南沙港铁路跨洪奇沥水道特大桥上应用,该铁路自开通运营至今,已完成2.1万个标准集装箱运输,列车通过该桥时安全平稳,轨道几何形位良好,扣件结构稳定可靠。  相似文献   

10.
为确定轨条碎弯时WJ-7型扣件的横向刚度取值,在实验室条件下,对一段安装了一组扣件的短钢轨加载横向力,测量扣件铁垫板和钢轨截面轨头、轨腰、轨底的横向位移,考虑到试验误差,只取均匀性较好5组数据分析横向力与位移之间的关系。试验结果表明:铁垫板位移随横向力的加载呈线性增加;以铁垫板产生单位位移所需施加的横向力表征横向刚度,常阻力扣件横向刚度在143.7~162.1 kN/mm,小阻力扣件横向刚度在130.2~138.9 kN/mm;钢轨截面各位置横向位移曲线由二次抛物线和直线两部分组成。  相似文献   

11.
以高速铁路桥梁无砟轨道WJ-7型和WJ-8型小阻力扣件为研究对象,开展不同纵向加载速率以及竖向荷载条件下的纵向阻力试验,研究了纵向加载速率和竖向荷载对无缝线路扣件纵向阻力特性的影响,并给出了不同竖向加载条件下WJ-7型和WJ-8型小阻力扣件的纵向阻力-位移曲线,以用于梁轨相互作用精细化分析。结果表明:当竖向荷载不变时,纵向加载速率对两种小阻力扣件的动刚度和纵向阻力最大值影响较小;随着竖向荷载的增大,两种小阻力扣件的动刚度及纵向阻力均明显增大,其弹塑性临界点也逐渐增大;与竖向无载工况相比,竖向荷载为50 kN时,WJ-7型小阻力扣件最大纵向阻力、弹塑性临界点增幅分别为177.74%和87.71%,WJ-8型小阻力扣件增幅分别为320.44%和118.88%。  相似文献   

12.
研究目的:桥上CRTSⅡ型板式无砟轨道无缝线路梁-板-轨及层间相互作用机理比较复杂,为研究各轨道及桥梁结构的制动力传递规律及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路空间耦合模型,计算列车制动荷载作用下各轨道及桥梁结构的纵向力与位移,并分析多种因素对制动力传递规律的影响。研究结论:(1)制动荷载作用下的轨道结构纵向力由拉力逐渐变为压力,纵向位移呈现先增后减的趋势;(2)需根据不同的检算部件选取最不利的荷载工况;(3)在检算时需考虑轨道板/底座板刚度的折减,且必须保证其施工质量;(4)采用小阻力扣件时轨板快速相对位移的剧增易带动轨下胶垫滑出;(5)固结机构、桥墩/台采用较大纵向刚度,并保持滑动层的良好滑动性能有利于各轨道及桥梁结构的受力与变形;(6)该研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路的设计、施工及运营维护提供参考。  相似文献   

13.
研究目的:目前,扣件在低温环境下的纵向力学性能鲜有研究。基于此,本文在冬季低温条件下进行WJ-8型常规阻力扣件不同扭矩以及竖向荷载下扣件纵向阻力与位移试验,从而得到扣件纵向阻力与扭矩和竖向荷载之间的关系。研究结论:(1) WJ-8型常规阻力扣件在冬季低温环境下,扭矩及竖向荷载对扣件纵向阻力均有影响,且竖向荷载作用的影响较扭矩更为明显;(2)不同扭矩下扣件的纵向滑移阻力与竖向荷载基本呈线性关系,不同竖向荷载下扣件的纵向滑移阻力与扭矩也基本呈线性关系;(3)有载和无载状况下,扣件系统的滑移摩擦系数变化较大,无载状况下扣件的滑移摩擦系数为0. 47,竖向荷载60 kN作用时达到了0. 52,常规阻力扣件在同一竖向荷载作用下,滑移摩擦系数随扭矩的增大而减小,有载状况下随竖向荷载的增大逐渐趋于稳定;(4)本研究成果对验证和完善无缝线路扣件纵向阻力取值计算理论具有参考价值。  相似文献   

14.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

15.
研究目的:桥隧过渡段处钢轨在梯度温度力作用下将发生纵向爬行,影响无缝线路稳定性。本文以轨温过渡区钢轨为研究对象,建立钢轨位移微分方程,推导轨温分布与钢轨纵向位移的映射关系,从而揭示影响无砟轨道钢轨爬行的规律。研究结论:(1)考虑扣件阻力非线性的钢轨纵向位移量和变形范围均远大于线性阻力模型;对钢轨最大位移量而言,轨温非线性分布相较于线性分布高出5.3%~38.6%,建议同时考虑轨温和纵向阻力非线性以准确获得过渡段钢轨爬行位移;(2)轨温差一定时,随着最大温度力梯度倍数k从1.5变化至3.5,轨温过渡区长度为10 m时,钢轨最大纵向位移增加了7%,而过渡区长度为40 m和50 m时分别增加了26.7%和32.8%,因此对于轨温差大、轨温过渡区长的过渡段,更应关注轨温非线性分布;(3)扣件极限阻力增大将使钢轨爬行量显著降低,但影响程度有限,极限阻力从6.5 kN/(m·轨)增加至12 kN/(m·轨),钢轨位移量下降40.8%~49.2%,而从24 kN/(m·轨)增加至30 kN/(m·轨),仅下降12.8%~24.4%;(4)推导的解析表达式能够准确描述各参数与钢轨纵向位移的映射关系,对于进一步研究过渡段钢轨受力特性以及改善无缝线路稳定性具有参考价值。  相似文献   

16.
研究目的:基于有限元方法与梁轨相互作用原理,建立能够分析坡道上无砟轨道桥梁变形对扣件受力影响的平面模型,分析桥梁坡度、墩顶纵向水平位移等因素对扣件受力的影响,提出在考虑桥梁收缩徐变、基础沉降、桥墩纵向温差及列车荷载等条件下32 m简支梁适应的坡度,从而为桥梁坡度选择提供理论指导。研究结论:(1)桥梁坡度以及墩顶纵向水平位移的改变均会引起扣件受力,并且扣件所受上拔力最大值随着桥梁坡度、墩顶纵向水平位移的增加近似呈线性增大;(2)对于梁端悬出0.55 m的32 m简支梁而言,当桥墩高度为20 m时,由扣件上拔力不超限确定的最大坡度值为29‰,当桥墩高度为40 m时最大坡度值为20‰;(3)当桥墩纵向水平刚度增加、梁缝附近铺设过渡板或采用特殊扣件时,可以适当增加桥梁的坡度限值;(4)基于扣件受力确定的桥梁坡度限值可为今后线路选线设计及桥梁坡度设置提供借鉴和参考。  相似文献   

17.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

18.
为评估高速铁路桥上无缝线路扣件对服役环境的适应性,以WJ-8型小阻力扣件为例,开展一系列室内纵向阻力试验。设置-30~60℃的环境温度和90~120 N·m的螺栓扭矩,在标准组装状态下按照10 kN/min的恒定速率加载,实时记录纵向力值及钢轨纵向位移值,每个工况加载4次。试验获得了4个不同扭矩和10个不同温度组合工况下的扣件纵向阻力-位移变化特征,分析得到温度、扭矩和纵向滑移阻力三者之间的映射关系。研究结果表明:1)不同工况下,扣件纵向阻力随位移的增大呈幂指型函数递增关系;不同扭矩作用下,扣件纵向滑移阻力随温度升高呈指数型函数递增关系;不同温度作用下,扣件纵向滑移阻力随扭矩增大呈线性递增关系。2)扭矩作用和温度作用对小阻力扣件纵向阻力均有影响,但扭矩作用基本不影响扣件阻力对温度变化的敏感性,反之亦然。3)当温度上升至40℃以后,在规范建议的90~120 N·m扭矩下,纵向滑移阻力均不再满足4±1 kN的要求。建议高温环境下适当减小螺栓扭矩,以便于桥上无缝线路附加力的释放。研究成果对于优化轨道结构设计、验证和完善无缝线路扣件纵向阻力取值计算理论具有参考意义。  相似文献   

19.
研究目的:为研究重载铁路桥上长枕埋入式无砟轨道扣件系统关键设计参数取值,本文基于弹性地基梁理论和车辆-轨道耦合动力学理论,建立32.5 t轴重重载货车-长枕埋入式无砟轨道-桥梁垂向耦合动力学模型,分析扣件刚度、扣件间距对重载铁路桥上长枕埋入式无砟轨道静、动力学性能的影响规律,提出重载铁路桥上长枕埋入式无砟轨道扣件系统设计参数取值。研究结论:(1)钢轨垂向位移和钢轨轨底应力随扣件系统刚度的增大而减小,车体垂向振动加速度、轮重减载率、轮轨力和桥梁垂向振动加速度随扣件系统刚度的增大而增大;(2)钢轨垂向位移、钢轨轨底应力、车体垂向振动加速度、轮重减载率和桥梁垂向振动加速度随扣件间距的增大而增大,但轮轨垂向力随之减小;(3)综合考虑轨道变形以及工程造价,建议重载铁路桥上长枕埋入式无砟轨道扣件系统的静刚度取为40~60 k N/mm,扣件系统的动刚度取为80~100 k N/mm,扣件间距取为0.6~0.65 m;(4)本研究成果可为重载铁路桥上长枕埋入式无砟轨道结构设计提供参考。  相似文献   

20.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号