首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
机车二系悬挂参数对重载车钩受压稳定性影响显著,为了探究102型车钩与重载机车二系悬挂参数的合理匹配,文章利用SIMPACK软件建立了详细的102车钩与HXD1型八轴重载机车组成的双机重联动力学模型,分析了不同计算工况下车钩力学特性与重载机车的安全性能;对比了不同车钩自由角及纵向力作用下,二系悬挂参数对机车安全性的影响。结果表明:当纵向压力较小时车钩转角稳定在自由角,机车轮轴横向力随车钩自由角及机车二系悬挂横向刚度增大而增大,与车钩纵向力无关。当纵向车钩压力增大到车钩需克服复原块预压缩载荷发生偏转时,车钩转角进一步增大,此时适当增加机车二系横向刚度有利于车钩稳定且影响较小。为保障制动工况下列车的运行安全,建议控制车钩自由角在6°以内,转向架单侧二系横向刚度范围在0.45~0.60 kN/mm;二系横向止挡间隙选择35 mm自由间隙及5 mm弹性间隙。  相似文献   

2.
针对摩擦式车钩受压偏转行为,分析了重载机车二系横向止挡纵向间距对车钩偏转角的关系,通过建立由2台8轴重载机车、1台虚拟货车与4组缓冲器具有迟滞特性的摩擦式钩缓系统组成的列车动力学模型,研究了制动条件下机车二系横向止挡纵向间距对车钩稳定性能与列车运行安全性能的影响规律。计算结果表明:二系横向止挡纵向间距对车钩受压稳定性能及列车运行安全性有重要影响。在500 kN压钩力作用下,当二系横向止挡纵向间距为10 m时,车钩最大偏转角和车体横向错位分别为10°和60 mm,列车安全性指标超出安全限值;当二系横向止挡纵向间距增加至14 m时,车钩最大偏转角和车体横向错位分别减少了70%和67%,列车安全性指标远低于安全限值。在机车设计中,应该适当地增加二系横向止挡纵向间距提高制动条件下列车安全运行性能。  相似文献   

3.
针对机车制动时的脱轨现象,研究纵向压钩力作用下13号车钩的稳钩原理。以4台SS3B型机车建立多机重联牵引3 000 t货物列车的动力学模型,机车车辆间的连接采用13号车钩,对其在30‰坡度长大下坡道上的稳钩能力进行分析。研究表明:采用止挡限位方式提供稳钩力矩的13号车钩,在其水平摆动到止挡位置后,其连接形成刚性的接触,当车钩受压时易导致机车的轮轴横向力和脱轨系数峰值瞬间增大,但持续作用的轮轴横向力和脱轨系数均在安全限制以内。结果表明,采用13号车钩的SS3B型电力机车在30‰坡道上能承受的最大纵向压钩力在1 100 kN左右。结论指出,列车制动时产生的纵向压钩力会导致机车车轮发生偏磨现象。  相似文献   

4.
研究关键参数对重载机车车钩稳定性的影响规律,以快速估算车钩的承载稳定性。分析重载机车车钩的结构及稳钩原理,根据车钩受力分析以及失稳条件,利用力平衡方法计算静态重载机车车钩满足稳定条件的最大承载能力。结果表明:重载机车车钩通过不等半径圆弧接触实现接触点的横移,从而实现减小车钩实际传力线的转角,以减小车钩横向力。重载机车车钩需要尽可能大的机车二系横向悬挂刚度与之匹配,并且保证圆弧接触面较大的摩擦系数。  相似文献   

5.
为分析曲线通过时车钩偏角对机车车体横向载荷的影响,建立机车与车辆的连挂关系,导出车钩偏角随曲线半径、车体长度、车钩长度、车体横移量变化的关系,构建单机和双机牵引机车车体的通用载荷方程,并考虑机车定距和二系簧横向等效刚度的影响,运用牛顿迭代法导出车体一、二位端的二系横向载荷。分析结果显示,车钩偏角对车体二位端所产生的二系横向力比一位端大;双机牵引时二位端的二系横向力比单机牵引时大,而一位端的二系横向力相差不大;曲线半径、车体及车钩长度、车体横移量和机车定距对二位端的二系横向力影响较大,对一位端的影响较小;二系簧与止挡合成横向等效刚度对二系横向力的影响较小。  相似文献   

6.
为了研究一、二系横向止挡非线性特性对32t大轴重机车动力学性能的影响,基于多刚体动力学软件SIMPACK建立了6轴机车动力学模型,在实车模型基础上通过对机车在不同工况下运行的动力学性能进行分析,得到横向止挡弹性间隙和止挡刚度的合理范围。研究结果表明:通过考察稳定性、直线运行性能和曲线通过性能,可以得出一系端轴横向弹性间隙和止挡刚度分别在1~3mm以及5.0~10.0MN/m范围内;一系中间轴弹性间隙取16~20mm,二系横向止挡间隙和刚度分别在10~12mm以及4.0~8.0MN/m范围内。  相似文献   

7.
为研究重载组合列车中的中间机车承压能力,在分析13A/QKX100钩缓系统工作原理的基础上,建立了具有非线性迟滞特性的弹性胶泥缓冲器及具有钩尾摩擦弧面的车钩仿真模型。采用由1台HXD1八轴机车及2节C80货车组成的列车模型,分析了不同特性钩缓系统的承压动态表现,并研究了配备不同特性钩缓系统时中间机车的承压能力。研究结果表明:对于没有摩擦稳钩作用的车钩,中间机车轮轴横向力最大值随纵向压钩力及车钩自由角的增大而增大,但当车钩自由角较小时轮轴横向力相对纵向力的增大不明显;当车钩自由角小于6°时或钩缓系统具有摩擦稳钩作用时中间机车的承压能力大于2 500 kN。  相似文献   

8.
针对HXD1型机车在大秦线上运行时渡板碰撞变形问题进行研究。分析得出渡板碰撞的主要原因和发生碰撞变形的边界条件。基于TDEAS纵向动力学仿真软件,建立了考虑发生渡板碰撞路段实际线路条件的动力学模型,仿真得到列车通过11‰长大下坡路段制动后产生较大的纵向冲动。利用Simpack软件建立机车详细多体动力学模型,充分考虑钩缓装置的钩尾摩擦特性,钩肩、钩销止挡特性,胶泥缓冲器阻抗特性等,并将纵向动力学仿真得到的纵向冲动力导入模型。仿真结果表明受到过大纵向冲动作用时,中部重联机车通过半径800m的弯道有较大的横向错位,渡板发生碰撞,同时分析渡板变形对机车横向安全性的影响。研究不同纵向冲动力渡板的碰撞情况,得到发生碰撞的临界车钩力。  相似文献   

9.
建立钩尾圆弧摩擦面与从板圆弧摩擦面的曲面—曲面接触摩擦数学模型,并结合改进的具有非线性迟滞特性的缓冲器数学模型和扁销止挡数学模型,采用SIMPACK软件建立重载机车扁销钩缓装置的动力学分析模型并验证其准确性,研究钩尾与从板间的摩擦系数及它们相互接触的圆弧摩擦面半径对钩缓装置受压稳定性的影响。结果表明:摩擦系数对钩缓装置的受压稳定性影响较大,随着摩擦系数的增大,钩尾的摩擦约束作用逐渐增强,钩缓装置的受压稳定性也随之增强,车钩转角呈阶梯形减小,建议摩擦系数的合理控制范围为0.25~0.45;钩尾的圆弧摩擦面半径越大、从板圆的圆弧摩擦面半径越小,则钩缓装置的受压稳定性越好。  相似文献   

10.
在分析重载机车102型钩缓装置结构特点的基础上,明确其受拉状态下最大自由转角大于受压状态的特点;通过唐包线重载列车实车试验数据,评价102型钩缓装置在双机重联牵引运用环境下区间运行和侧向通过12号道岔工况下的重载适应性,分析车钩最大自由转角和机车二系悬挂横向刚度对重载机车安全性的影响;采用加权离散方法,建立可模拟车钩钩肩止挡和缓冲器偏压特性的102型钩缓装置动力学子模型,基于此搭建机车位于双机重联位和中部从控位的列车动力学模型并进行验证,仿真分析102型钩缓装置在组合编组运用环境下的重载适应性。结果表明:102型钩缓装置能够适应双机重联牵引单元万吨列车的安全运用要求,在侧向通过道岔时具有较好的线路曲线方向跟随性;机车二系悬挂刚度、车钩最大受压自由转角对机车运行安全性具有明显影响;在满足现场车钩连挂需求的前提下合理控制车钩最大受压自由转角,102型钩缓装置能够适应双机组合牵引2万t列车的安全运用要求。  相似文献   

11.
基于列车纵向动力学理论和车辆—轨道耦合动力学理论,建立考虑钩缓系统中车钩纵向、横向和垂向作用力的重载列车—轨道耦合动力学模型。以机车牵引万吨列车为考核工况,分析牵引和制动时机车的受力特点,研究牵引力、制动力及车钩力对机车运行性能的影响过程和影响程度,并对理论模型进行试验验证。结果表明:在牵引、电制动及紧急制动工况下,直线线路上机车的轮重分别较惰行工况降低了约13,7和4kN,单纯的牵引或制动力可降低轮轨横向蠕滑力,间接造成轮轨横向力的小幅增大,但轮轴横向力基本不变;车钩力可通过车钩摆角产生横向分量,并传递到轮轨界面,改变轮轴横向力的整体变化趋势;若车钩偏转3°,在电制动工况下,前部机车承受的压钩力较大,引起的轮轴横向力增幅达18kN,在紧急制动工况下,机车上的压钩力幅值小,引起的轮轴横向力在8kN以内。  相似文献   

12.
二系横向止挡作为轨道车辆转向架二系悬挂关键零部件,对车辆动力学性能有一定影响,其刚度特性对高速列车曲线通过时的舒适性影响较大。对采用不同刚度特性参数的二系横向止挡的动车组,在线路不同曲线条件下进行试验,通过分析高速动车组平稳性、稳定性和安全性指标的变化规律,研究二系横向止挡刚度特性对高速动车组动力学性能的影响。线路试验结果表明,止挡刚度对车体的横向振动加速度影响较大,而对转向架稳定性及轮轨动态相互作用性能指标的影响甚微。  相似文献   

13.
建立了朔黄铁路3万吨C80重载列车纵向动力学模型、机车和车辆动力学模型及轨道结构有限元模型,分析了重载列车通过小半径曲线段时最大车钩力分布、车辆运行安全性以及轨道结构横向稳定性。结果表明:3万吨重载列车最大压钩力一般大于拉钩力,压钩力最大值主要出现于第二个万吨编组的前部和第三个万吨编组的中部;3万吨重载列车作用下压钩力、拉钩力、轮轴横向力、轨排横向位移的最大值分别为1 205.00、1 062.10、83.88 kN和1.22 mm,均小于安全限值,满足列车运行安全和轨道结构横向稳定性要求;通信故障情况下脱轨系数、轮重减载率、轮轴横向力和轨排横向位移均大于正常通信情况下,且其最大值均出现于半径400 m曲线段。  相似文献   

14.
为研究纵向力作用下重载机车运行安全性,通过对比分析重载机车在不同线路工况、不同车钩力状态、不同车钩转角下的动力学性能,得到了纵向力作用下重载机车运行安全性与车钩力状态、线路工况以及车钩转角的对应关系。结果表明:机车运行安全性指标随着线路曲率的增大而增大;机车在曲线上运行时,在压钩力作用下的机车运行安全性指标明显增大;压钩力作用时无论在直线还是在曲线线路上,机车车钩都会出现不同程度的水平偏转,车钩角明显增大。建议在纵向力作用下重载机车通过小半径曲线时要合理控制机车再生制动力,从而避免出现机车车钩受压失稳的危险。  相似文献   

15.
针对HXD3B型机车动力学试验中出现脱轨系数和轮轴横向力超标的问题进行判断与分析,认为与二系钢簧挠度过小有关,导致机车在试验中机车动力学性能对车钩力较为敏感;通过动力学计算分析,提出了机车自稳钩力评价的办法,通过改进弹簧设计解决出现的问题。  相似文献   

16.
根据列车纵向动力学相关理论,利用ADAMS软件建立2车钩冲击连挂动力学模型,且模型经过台车冲击试验数据验证,最大冲击力和运动车钩缓冲器最大压缩量相对误差均不超过3%。利用该模型分别研究不同冲击速度、不同惩罚参数和不同钩锁弹簧预载荷对密接式车钩连挂特性的影响。研究结果表明:最大冲击力和缓冲器最大压缩量均随冲击速度的上升而上升,但几乎不受惩罚参数和弹簧预载荷的影响;当冲击速度为36 km/h时,两车钩连挂失败,最大冲击力达到1 130.2kN,运动车钩和静止车钩缓冲器位移曲线分离,但最大压缩量都未超过缓冲器最大行程100 mm;当冲击速度上升或预载荷减小时,车钩连挂时间增加,且连挂时间随惩罚参数的增大先增加后减小,其拐点在惩罚参数为1.0×10~5的位置;惩罚参数和钩锁弹簧预载荷在一定程度上影响车钩连挂过程,当惩罚参数超过1.0×10~7或预载荷小于2.0 kN时车钩连挂失败。  相似文献   

17.
承受纵向压力时HXD2型重载机车动力学问题研究   总被引:1,自引:0,他引:1  
针对HXD2型重载机车牵引试验中安全性指标超限的问题,对DFC-E100型钩缓装置及其原型车钩受纵向制动压力下的作用原理进行了分析,根据DFC-E100型钩缓装置的试验数据建立了车钩动力学模型,并将其应用到两台HXD2机车牵引重载列车的分析模型中,对承受纵向压力时重载机车的动力学问题进行研究.结果表明大摆角车钩必须具有对中复位功能;纵向压钩力和对中复位功能对机车轮缘磨耗有显著影响.  相似文献   

18.
针对近期大秦线发生的2.1万吨组合列车中部机车与车辆车钩分离问题,总结介绍了中部机车车钩分离问题发生的过程和主要特点,结合列车操控、纵向力特点、机车检修、车辆检修等多方面因素分析和机车模拟试验对该问题产生原因进行了初步分析。结果表明:车钩分离为机车车钩从车辆车钩上方受拉跳出;在长大下坡区段均是中部机车的后钩与后部车辆脱钩分离,在上坡或平坡区段是中部机车的前钩与前部车辆脱钩分离;初步判断车钩分离问题与钩高差临近限值、纵向拉钩力较大具有直接关系。最后给出了一些相应的合理化改进建议。  相似文献   

19.
对机车车钩的钩头轮廓曲线进行数据离散,采用多体动力学软件SIMPACK反演得到钩头的轮廓曲面,建立1对连挂钩头间的曲面/曲面接触模型,与钩肩、止档及钩尾摩擦副模型,融合非线性缓冲器模型建立13A/QKX-100和DFC-E100型2种典型重载机车钩缓装置模型.仿真分析重载机车通过曲线时车钩的偏转行为,并与静态计算结果对比.结果表明:由传统的车钩转角静态计算方法只能计算理想状态下的车钩钩体中心线相对于车体中心线的转角(钩体转角);受钩头间的相对转角(钩头转角)及轨道曲率变化、不平顺等线路状况的影响,实际的钩体转角比静态计算结果大;机车曲线通过时钩缓装置的主要运动是钩体相对车体的转动,当钩体转角处于自由转角范围内时钩头转角较小,一般不超0.16°;当钩体转角达到自由转角且有继续增大的趋势时钩头间会产生明显的相对转动进行补偿,以使机车顺利通过曲线.  相似文献   

20.
为研究HXD2C型电力机车车钩钩尾框异常磨耗现象,基于现场调研和列车跟踪测试,通过监测重联机车在运行过程中车钩及钩尾框的状态,即测量车钩受力状态,车钩垂向、横向摆角,车钩垂向位移以及视频监控前从板-预压板与钩尾框之间的间隙情况,选取13处典型时段的列车测试及运行数据,分析钩尾框发生异常磨耗原因及改进措施。研究结果表明:钩尾框的异常磨耗现象与重联机车车钩初始钩高差、车钩运动姿态、线路条件和列车不同操纵工况下的缓冲装置持续受力状态有关;通过在前从板-预压板与钩尾框之间涂抹润滑剂,焊接限位块或者减小钩尾框框身与车钩箱顶部限位板之间的间隙等措施,可避免前从板-预压板与钩尾框产生直接接触,达到抑制钩尾框异常磨耗的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号