首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
架空接触网供电和接触轨供电是地铁线路常见的两种供电方式。运用CDEGS软件建立了接触网线路和接触轨线路模型,仿真分析两种方式下雷击位置及高架桥高度对耐雷击水平的影响,以及接触轨供电方式下避雷带架设高度对耐雷击水平的影响;比较了两种供电方式下的耐雷击水平差异并解释了原因。结果表明,两种供电方式下,雷击点距接地点越远,耐雷击水平越低;高架桥越高,耐雷水平越低。接触轨供电方式下,避雷带越高,耐雷击水平越高。接触轨供电方式下的耐雷击水平较接触网供电方式高得多。  相似文献   

2.
《机车电传动》2021,(4):131-137
传统的铁路牵引供电线路故障定位系统大多基于阻抗计算原理,受线路参数影响较大,采用行波测距原理可避免这一问题。因此,基于非接触式行波定位原理设计了一套牵引供电线路故障定位系统。该系统采用非接触式电场传感器,通过测量接触网下方的电场反推接触网故障电压,具有频带宽、非接触式测量和安装维护方便的优点;采用基于模极大值的小波方法对故障波形进行分析,实现牵引网的故障定位,此外还分析了小波函数和分解层数对故障定位精度的影响。以朔黄铁路朔西线供电线路短路试验为例,通过非接触式故障定位系统测量得到的试验波形,按牵引接触网的电气工况计算暂态行波波速,最终得到测量误差在500 m以内,验证了非接触式故障定位系统的有效性。  相似文献   

3.
以国内接触网绝缘子的绝缘强度和雷电流的概率分布为基础,运用接触网雷击跳闸的概率模型计算比较了接触网未安装线路避雷器和安装线路避雷器的雷击跳闸情况。为接触网的线路避雷器使用提供了参考,同时为电力系统中弱绝缘配供电线路的线路避雷器使用提供借鉴。  相似文献   

4.
本文对直供方式接触网的。故障测距装置基本原理进行简要介绍,分析了既有测距装置因忽略电气结构差异和平行线路之间互感影响而存在较大测距误差的弊端,提出了将接触网按线路长度平均分成三段进行参数修正,以及针对接触网不同的运作方式改进故障测距计算模型的方法,经实践证明有效提高了牵引供电接触网故障测距装置的精确度。  相似文献   

5.
我国城市轨道交通架空接触网导线离地高度和线路绝缘水平与电力系统10 kV配电线路相当,雷电防护应以防感应雷为主.本文对接触网感应过电压进行了仿真研究,利用统计方法计算了接触网感应雷击跳闸率,提出了采用避雷线、绝缘子保护间隙和串联间隙金属氧化物避雷器3种雷电防护措施.  相似文献   

6.
本文简要介绍武汉长江大桥接触网正馈线电缆的结构、工作条件、敷设运行方式以及故障抢修应急方案。  相似文献   

7.
我国高速铁路采用大跨度高架桥结构,接触网离地面较高,容易遭受雷击进而引发动车组故障,给列车安全运行带来隐患,因此有必要探究雷击接触网时高速动车组车体过电压及其抑制措施。本文基于接触网电气模型和高速动车组电路结构,利用Pspice建立雷击接触网时车体过电压仿真模型,定量分析车体接地电阻参数对过电压的影响,提出抑制过电压的措施。仿真结果表明:雷击接触网时,受电弓所在的车体过电压幅值可达43.45kV,距离受电弓越远车体过电压越低;接地电阻器的分布电感对各车体过电压影响较大,且与车体所在位置有关,对距离受电弓越近的车体,影响越大。将2~5车的接地方式改为直接接地方式或电阻器并联电容的方式均能有效抑制车体过电压,且当并联的电容值大于10μF时,二者对过电压幅值的抑制程度基本一致,并在电阻器并联电容的基础上,通过减少接地电缆长度能够进一步降低车体过电压,将各车体过电压抑制在2kV以内。本文研究结果为车体过电压的进一步分析提供了理论依据。  相似文献   

8.
结合准格尔至朔州铁路(准朔铁路)设计、施工实践,基于准朔线接触网的主要结构和参数,重点对雷击接触网附近地面、雷击接触网支柱顶部、雷击接触网导线3种情况下的接触网耐雷水平进行了分析。同时通过对既有线路接触网加装避雷线实际应用效果的分析,利用滚球法就准朔铁路避雷线最优架设高度进行了定量计算,为后续防雷补强工作提供借鉴。  相似文献   

9.
根据线路运营数据,针对树害等自然灾害对线路故障的影响,分析了普速铁路10kV线路采用高压电缆长大线路敷设的优缺点,并对接地方式、无功补偿及保护配置的相应改造进行了探讨。  相似文献   

10.
对全并联AT供电方式的接触网进行理论分析,按照实际运营中可能发生的接触网故障类型开展短路试验,收集牵引供电系统试验数据,结合理论计算结果和试验数据比较来研判牵引供电系统的保护装置配置及故障测距参数选取的合理性,探索提高牵引供电系统保护可靠性及故障测距精度的途径,为牵引供电系统运行安全及接触网故障处置提供参考.  相似文献   

11.
在既有牵引供电系统事故恢复的基础上,提出了一种以开关作为节点,开关间线路作为支路的节点-支路关联矩阵描述牵引供电系统接触网拓扑结构,并给出了基于这种关联矩阵的故障区域判断与隔离的方法,能够实现对接触网故障进行准确定位、迅速隔离故障区段,减少了牵引供电系统的故障停电范围,提高了供电的可靠性。  相似文献   

12.
为了深化研究高速铁路智能牵引供电的快速自愈重构技术,通过分析目前牵引供电系统的自愈重构技术特点,结合接触网电分段功能,提出以接触网供电分段为单元的自愈重构模式,找出自愈重构的薄弱环节为接触网开关,其在带负荷操作、倒闸时间及服役状态等方面难以适应智能牵引供电发展要求。快速自愈重构技术以供电分段单元重构模式为基础,接触网开关分阶段升级为户外27.5 kV真空断路器,供电调度端按最小停电单元对接触网故障进行直控操作。  相似文献   

13.
当前,沪宁段牵引供电接触网受雷击影响引发故障突出。为解决该问题,综合比较防雷的两个方案,并分析其原理,提出提高防雷能力的有效措施。  相似文献   

14.
结合接触网的受雷情况和结构特点建立接触网的雷击模型,分别给出线路遭受直接雷击和感应雷击时接触网的耐雷水平计算公式。基于广义积分法,提出计入感应雷击的计算接触网雷击跳闸率的方法。以常见的复线接触网为例,按照给出的模型和计算方法计算接触网的跳闸率,并将计算结果与实际情况比较。研究结果表明:接触网遭受感应雷击时的耐雷水平较低,因感应雷击造成的接触网雷击跳闸次数占总雷击跳闸次数的31.6%,感应雷击对接触网的跳闸影响是明显的;计入感应雷击计算的总跳闸次数更接近实际运行值。  相似文献   

15.
我国电气化铁路牵引供电采用27.5 kV单相供电,由于线路负荷的多样性,按牵引容量及供电线路长度要求,主要采用AT或BT供电方式,牵引变压器接线主要以V/v、V/x、Scott或阻抗匹配平衡变压器接线为主。本文通过对电子开关地面自动过分相适应接触网不同供电模式进行分析,论述了多模式下的适应性,并对电子开关地面自动过分相装置的电压耐受能力提出设计思路。  相似文献   

16.
10kV配电线路采用绝缘导线,这对提高线路供电的可靠性,防止人或动物碰触导线所引起的危险事故等发挥着巨大的作用。与电缆相比,它具有投资省、建设快的优点。但10kV配电网的分布广泛、设备重多,而且绝缘水平较低,雷击断线问题十分严重,甚至造成绝缘事故,因此必须采取有效的防雷击措施。  相似文献   

17.
针对已安装行波监测终端的铁路牵引网输电线路,对故障跳闸时刻行波特征量进行提取,利用已知故障跳闸巡线原因进行特征量分类,创建基于故障行波的故障原因数据库,将采集到的故障时刻行波与其对比,从而对接触网故障进行原因辨识,当接触网故障重合闸不成功时,可指导接触网运维部门进行重合闸操作,以保障接触网安全运行。  相似文献   

18.
准确的测量高速电气化铁路接触网线路故障点的位置,不仅对牵引供电系统具有重要意义,而且也对铁路运输具有重要影响。根据行波传输理论以及行波测距的特点,研究一种A/C/D/E多型行波复用式测量接触网故障的测距方法,并结合小波分析、求导算法、改进型求导算法、模极大值法等综合分析不同方式的行波法测距结果,实现对故障行波与干扰行波的准确识别,提高了接触网线路发生故障时的精确定位。经模拟试验、现场测试、实时在线运行,通过故障行波测距装置对实际故障点的定位情况及波形分析,验证了该技术在高速电气化铁道接触网故障测距定位的实际使用效果。且不受接触网短路型式的影响,定位准确,精度能够得以保证。  相似文献   

19.
通过对比分析高速铁路接触网与架空输电线路防雷规范差异条款,并利用"经验法"计算高速铁路接触网地线和附加导线弛度、落雷次数、耦合系数、建弧率、绕击率、分流系数、耐雷水平、跳闸率等关键技术参数和指标,评估降低高速铁路雷击跳闸率相关措施的有效性.研究发现,全线架设架空地线的接触网绝缘水平及耐雷水平与66 kV架空输电线路相当...  相似文献   

20.
贯通线全电缆线路中性点接地方式的选择   总被引:2,自引:1,他引:1  
研究目的:长期以来我国普速铁路10kV贯通线采用架空方式为主、电缆线路为辅,10kV贯通线中性点采用不接地系统。高速铁路10kV贯通线大量使用电缆线路,长距离电缆线路的对地电容电流远大于架空线路,且10kV贯通线电缆线路与通信信号电缆长距离接近平行敷设,应对系统中性点接地方式进行综合研究,提出适合我国高速铁路10kV贯通线全电缆线路特点的中性点接地方式,以指导工程设计。研究结论:经调压器供电的10kV贯通线全电缆线路中性点宜采用低电阻接地,当调压器容量为250kVA及以下时,中性点可采用直接接地;低电阻接地的电阻值宜按单相接地电流小于400A、接地故障瞬时跳闸方式选择;变配电所接地网电阻值宜按R≤1Ω设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号