首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
市域轨道交通是介于高速铁路与地铁之间的轨道交通制式,其桥上无缝道岔设计不能完全按照高速铁路和地铁的相关规范。对某市域轨道交通 4 × 30 m 连续梁桥上单渡线道岔的无缝化布置进行了研究。根据道岔位移随道岔始端距梁缝距离的变化规律可知:当单渡线道岔始端距梁缝大于14 m 时,在伸缩力和制动力作用下转辙机处梁轨相对位移小于 5 mm,道岔钢轨强度和道岔位移满足无缝道岔布置要求。  相似文献   

2.
采用通用有限元软件MIDAS/CIVIL建立郑西客运专线渭南北站桥上单开和渡线无缝道岔—桥梁有限元模型,研究温度场作用下无缝道岔与桥梁的相互作用。结果表明:在温度荷载作用下,单开道岔和渡线道岔区钢轨的纵向位移远大于横向位移,最大横向位移约为1~2mm,最大纵向位移约为20~30mm,但均小于钢轨位移允许限值40mm;单开道岔和渡线无缝道岔区钢轨的最大温度纵向力分别为1 303和1 340kN,均发生在连续梁梁缝附近约20m范围内,因此应加强该区域钢轨的监测和养护,防止出现夏季胀轨、冬季断轨的现象,且建议在梁缝处适当减小扣件阻力;单开道岔和渡线道岔区梁体的横向位移非常接近且均较小,最大值分别为2.7和2.8mm,但梁体的纵向位移差异较大,最大值分别为5.3和26.8mm,且均发生在梁端部;无缝道岔区钢轨的温度变形对桥梁的纵向和横向位移影响均很小,梁体均匀温升是引起梁体变形的主要原因,因此桥梁的养护维修可不必过于关注道岔区温度力的影响。  相似文献   

3.
桥上无缝道岔是在高速铁路、艰险山区铁路上铺设跨区间无缝线路不可避免的技术难题,同时跨越震区时,道岔结构自身处于双层薄弱环节之中。根据地震作用下有砟轨道桥上无缝道岔梁轨相互作用原理,建立地震作用下岔-桥-墩动力非线性有限元模型,分析地震波频谱特性、地震动加速度峰值、岔区阻力、梁体温差等因素下的有砟轨道桥上无缝道岔地震作用响应规律。研究结果表明:无缝道岔约束作用较大提高了桥梁结构的低阶自振频率,而且改变了其振动形态;地震波频谱特性和加速度峰值大小对桥上无缝道岔响应影响显著,地震荷载波频越靠近结构主频,加速度峰值越大,桥上无缝道岔受力和变形越大;在钢轨温变较高,又同时考虑地震荷载效应时,钢轨强度和线路稳定性均得不到保障,建议对跨越震区的桥上无缝道岔设计时检算地震荷载与钢轨、梁体温变共同作用时的钢轨纵向力以及道岔联结件受力、关键位置相对位移等。  相似文献   

4.
温度跨度对桥上无缝线路钢轨伸缩附加力影响很大,是设置钢轨伸缩调节器的关键因素之一。基于连续刚构梁桥墩纵向水平刚度以及两侧简支梁支座布置对桥上无缝线路受力变形的影响,采用理论分析和ANSYS有限元软件研究了连续刚构梁桥上无缝线路温度跨度。结论表明刚构墩刚度越大,温度力作用下钢轨伸缩附加力越小,桥梁变形越小,但影响很小;制动力作用下,梁轨快速相对位移和钢轨制动附加力越小,但影响较大。分析时一般可将连续刚构梁桥简化为仅有一个固定支座且位于其几何中点处的连续梁,温度跨度即为该点到相邻一跨(联)桥上固定支座之间的距离,分析计算精度可满足桥上无缝线路设计检算的需要。研究结果对我国大跨度连续刚构桥桥上无缝线路的建设有着重要的指导作用。  相似文献   

5.
高墩水平温差对连续刚构桥上无缝线路的影响   总被引:1,自引:1,他引:0  
为研究高墩水平温差对桥上无缝线路的影响,选取某高墩大跨连续刚构桥工程实例,基于梁轨相互作用原理,建立线桥墩一体化有限元模型,分析在水平纵向和横向温差作用下高墩大跨桥上无缝线路受力变形情况。结果表明:高墩纵向温差对连续刚构桥上无缝线路纵向受力影响较大,随着桥墩纵向温差的增大,桥上无缝线路受力逐渐增大;桥墩横向温差影响桥上无缝线路平顺性,当桥墩横向温差超过一定的限值时,连续刚构桥上无缝线路会出现长波不平顺超限;总结以上分析结果,建议在连续刚构桥上无缝线路设计检算中考虑高墩在水平温差作用下对桥上无缝线路的影响。  相似文献   

6.
简支梁桥上无缝道岔温度力与位移影响因素分析   总被引:13,自引:1,他引:12  
将道岔、梁和墩台视为一个系统,建立简支梁桥上无缝道岔的有限元模型。根据变分原理和“对号入座”法则建立有限元方程组。以铺设一组43号道岔的18跨32 m混凝土简支梁桥为例,研究影响简支梁桥上无缝道岔受力与位移的因素,如支座布置形式、轨温变化幅度、梁温差、扣件阻力、道床阻力、限位器间隙、岔枕刚度、限位器位置、梁跨长度和桥墩刚度等。计算结果表明,简支梁桥上无缝道岔在温度荷载作用下,钢轨温度力在限位器处和限位器前梁端处同时出现两个峰值;与桥上无缝线路相比,桥上无缝道岔桥墩处的最大受力显著增大;当梁与导轨同向伸缩时,岔区内钢轨位移较大;限位器应布置在梁跨中部;限位器间隙对桥上无缝道岔的受力与位移有双重影响;岔区内钢轨的受力与位移随桥墩刚度增大而减小;岔区内采用较大的扣件阻力和道床阻力,岔区外采用较小的扣件阻力和道床阻力,可以降低钢轨附加温度力。  相似文献   

7.
基于梁轨相互作用原理,建立桥上无缝道岔线桥墩一体化模型,对典型高架站咽喉区单渡线道岔梁+简支梁+单开道岔梁上无缝道岔的轨道受力和变形特性进行分析;对不同小阻力铺设方案、道岔梁间插入简支梁方案的轨道受力和变形特性规律进行研究.研究结果表明:钢轨伸缩附加力、钢轨制动附加力最大值出现在单渡线道岔梁梁缝处,钢轨强度、钢轨纵向位...  相似文献   

8.
宫万国 《铁道建筑》2012,(10):120-123
桥上无缝道岔设计同时涉及桥梁—钢轨相互作用力及道岔基本轨—尖轨相互作用力两方面问题。对典型桥上咽喉区普通桥上无缝线路及桥上无缝道岔群进行了对比检算,检算结果表明,桥上无缝道岔较一般区间桥上无缝线路钢轨附加力明显增大,桥上无缝道岔设计应同时兼顾道岔与桥梁孔跨布置。无缝道岔布置于连续梁上时,其钢轨伸缩附加力较区间桥上无缝线路增幅要大,尤其在咽喉区多联连续梁且两组道岔对向布置情况最为不利,如道岔对向布置情况不可避免,此时应在两连续梁间插入简支梁,道岔距梁缝应保持一定距离,以尽量减少连续梁温度跨度与道岔限位装置钢轨附加力叠加效应。  相似文献   

9.
客运专线桥上无缝道岔空间力学特性的研究   总被引:5,自引:0,他引:5  
为解决哈大客运专线红嘴河特大桥桥上无缝道岔受力和变形问题,根据道岔、桥梁结构和布置形式,建立桥上无缝道岔空间耦合模型,从温度荷载、竖向荷载、钢轨横向变形等方面对其空间力学特性进行分析.结果表明:温度荷载下钢轨的伸缩附加力最大值位于梁体活动支座端,受固定支座端至活动支座端距离影响较大;尖轨、心轨尖端相对于基本轨、翼轨的位移较小,处于外锁闭机构允许的伸缩量范围之内;连续梁半联满布荷载时,钢轨纵向位移、挠曲附加力及桥梁竖向挠度最大;单线直向满布荷载时,桥梁横向挠度、扭转最大;温度荷载对钢轨横向变形的影响较小,减载率、脱轨系数变化不大.但由于客运专线标准高、道岔与桥梁结构复杂等因素,对钢轨横向变形的影响不容忽视,建议设计客运专线桥上无缝道岔时考虑其空间力学特性.  相似文献   

10.
为研究有轨电车小半径曲线连续钢梁桥上铺设无缝线路,利用有限元法建立轨道-桥梁曲线线型相互作用模型,分别对有缝线路布置、不设钢轨伸缩调节器无缝线路布置、设钢轨伸缩调节器无缝线路布置进行了降温伸缩工况计算。研究结果表明:有缝线路轨缝在大跨度桥梁梁端较难协调桥梁伸缩位移,轨缝存在夏季顶死、冬季拉大的病害;不设钢轨伸缩调节器的无缝线路导致曲线连续梁桥墩承受较大的钢轨温度力径向分力,曲线与直线线型衔接处存在轨向不平顺;设钢轨伸缩调节器的无缝线路通过钢轨伸缩调节器释放了钢轨温度力,桥墩承受的钢轨温度力径向分力较小。考虑到梁轨的纵向和横向耦合作用,采用曲线线型建立计算模型较为符合实际工况。  相似文献   

11.
连续梁桥上无缝道岔温度力与变形影响因素分析   总被引:2,自引:1,他引:1  
研究目的:桥上无缝道岔是跨区间无缝线路的一项关键技术。分析各种因素对道岔和桥梁的受力与变形的影响,总结出连续梁桥上无缝道岔受力与变形规律,是关系到客运专线运营安全的重要问题。研究方法:通过建立连续梁桥上无缝道岔的有限元计算模型,利用Ansys软件对连续梁桥上无缝道岔进行力学计算并作参数影响分析。研究结果:道岔布置位置和桥墩支座布置形式对系统受力和变形影响较大;增大岔区内道床纵向阻力和扣件纵向阻力,有利于控制道岔的位移;连续梁固定墩刚度增加能有效控制道岔各主要位移,同时能减小基本轨最大附加力;轨温变化幅度对系统受力和变形的影响非常显著。研究结论:道岔应避免布置在梁的端部并且尽量让道岔导轨与梁体反向伸缩;合理设计锁定轨温能有效地改善系统受力状况。  相似文献   

12.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

13.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

14.
有砟轨道基础桥上无缝线路计算软件开发及应用   总被引:1,自引:1,他引:0  
运用梁轨相互作用基本原理,在考虑钢轨、桥梁和墩台相互作用的基础上,建立了桥上无缝线路的线桥墩空间一体化计算模型,用于对桥上无缝线路伸缩附加力、挠曲力、制动附加力、断轨力、梁轨相对位移及墩台纵向受力和变形的计算分析.为计算方便,以有限元软件ANSYS为计算平台,利用ANSYS参数化设计语言进行二次开发,编制了有砟轨道基础桥上无缝线路通用计算软件,可用于各种桥上无缝线路的设计计算.  相似文献   

15.
文章以某市域铁路高架站后咽喉区(40+64+40) m四线变双线道岔梁+26 m简支梁+6×32 m单渡线道岔梁为工程背景,基于岔-桥相互作用原理和非线性有限单元法,建立岔-桥-墩一体化计算模型,分析不同轨道设计方案下大跨连续梁桥上无缝道岔群纵向力变化规律,并以规范要求开展设计检算,结果表明:(1)钢轨伸缩力、制动力峰值均出现在大跨连续梁右梁缝处;(2)全桥采用常阻力扣件时,钢轨伸缩力最大值达到965.1 kN,钢轨总应力超过容许应力限值;(3)采用小阻力扣件可大幅降低钢轨伸缩力,对钢轨制动力则影响不大;(4)铺设小阻力扣件、适当降低锁定轨温、放大断缝值要求等轨道措施可使得无缝道岔应力、位移指标满足设计要求。研究结果可为大跨连续梁桥上无缝道岔群轨道设计方案提供参考。  相似文献   

16.
桥墩纵向水平刚度对桥上无缝道岔的影响   总被引:1,自引:1,他引:0  
为了进一步研究桥上无缝道岔,通过计算,分析桥墩纵向水平刚度在连续梁桥上对钢轨、道岔、墩台等结构部件受力及变形的影响。本文采用ANSYS软件建立桥上无缝道岔的岔—桥—墩纵向相互作用一体化模型,并进行力学分析。研究结果是:随着连续梁桥桥墩刚度的增大,基本轨伸缩附加力减小,连续梁桥墩的纵向力增大;增大连续梁桥墩纵向水平刚度对铺设于其上的无缝道岔的受力与变形是有利的。  相似文献   

17.
地震作用下大跨桥上无缝线路纵向响应的研究具有重要意义。以一座大跨桥梁为例,研究了一致激励下桥上无缝线路纵向地震响应,并对小阻力扣件铺设、梁体温差及地震波频谱特性对钢轨最大纵向力的影响进行了分析。得出结论:轨道约束对大跨桥梁结构的低阶纵向自振频率有较大的影响;地震作用下梁缝处钢轨最大纵向力比根据现有规范计算的钢轨最大伸缩力大很多,铁路工程相关规范应增加钢轨地震力检算这一指标;大跨桥上铺设小阻力扣件后,地震时钢轨最大纵向力会降低约20%~30%;穿越震区的大跨桥上无缝线路设计应合理考虑梁体温差的影响,并使桥梁结构低阶纵向自振频率有效避开场地处地震波的主频率段,否则地震发生时桥上无缝线路工作状态将会受到较大考验。  相似文献   

18.
针对双固定墩对桥上无缝线路纵向力的影响开展研究,以某市域铁路为实际工程背景,基于梁轨相互作用原理、非线性有限单元法,建立线-桥-墩一体化计算模型,分析温度变化、列车制(启)动以及断轨工况下双固定墩简支梁桥上无缝线路纵向力变化规律,并以规范要求进行轨道力学检算。计算结果表明,相比普通桥上无缝线路而言,双固定墩对钢轨最大伸缩及制动拉力影响不大,但显著提高伸缩压力的峰值;双固定墩所受纵向力近似为0,但与双固定墩相邻桥墩承受的纵向力增幅达到50%左右;当钢轨在双固定墩处折断时,双固定墩对钢轨断缝有抑制作用;从桥上无缝线路受力角度考虑,当墩刚度低于500 kN/(cm·单线)时,双固定墩桥上无缝线路无需单独进行轨道力学检算,桥梁专业按规范取值进行桥墩检算即可满足工程设计需求。研究结果可为双固定墩桥上无缝线路轨道系统和墩台设计提供参考。  相似文献   

19.
曲村  高亮  蔡小培  车宏军 《铁道建筑》2012,(10):124-127
由于钢桁梁桥的桥梁结构和桥上无缝线路的轨道结构具有特殊性,不能使用简单的桥上无缝线路计算模型,为了更好地分析其受力与变形,以某8×33.7 m栓焊简支桁梁桥上无缝线路为例,采用ANSYS有限元软件建立了桥上无缝线路空间耦合模型。该模型充分考虑了钢桁梁桥纵梁、横梁、桁杆、桥墩和无缝线路钢轨、扣件、轨枕等的细部结构,及各部件对整体力学特性的影响,可以计算钢轨及桥墩在温度荷载和车辆荷载作用下所产生的附加力,也可以对梁缝纵向变化量、钢轨横向变形、桥梁竖向挠度等进行计算。  相似文献   

20.
针对城市轨道交通中新应用的双线U型梁和传统的双线箱型梁两种不同形式桥梁,用有限元法计算分析桥上无缝线路附加挠曲力及附加挠曲位移的分布,着重研究线路纵向阻力、桥梁跨度和桥墩刚度等参数变化对桥上无缝线路钢轨受力、桥墩受力及桥梁挠度的影响。研究结果表明,线路纵向阻力、桥梁跨度对钢轨挠曲力的影响较大,而桥墩纵向刚度对钢轨挠曲力的影响较小,为城市轨道交通设计提供理论参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号