首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
For a large floating vessel in waves,radiation damping is not an accurate prediction of the degree of roll unlike other degrees of freedom motion.Therefore,to get the knowledge of roll motion performance of deepwater pipelay crane vessels and to keep the vessel working safety,the paper presents the relationship between a series of dimensionless roll damping coefficients and the roll response amplitude operator(RAO).By using two kinds of empirical data,the roll damping is estimated in the calculation flow.After getting the roll damping coefficient from the model test,a prediction of roll motion in regular waves is evaluated.According to the wave condition in the working region,short term statistics of roll motion are presented under different wave parameters.Moreover,the relationship between the maximal roll response level to peak spectral wave period and the roll damping coefficient is investigated.Results may provide some reference to design and improve this kind of vessel.  相似文献   

2.
As there are lots of non-linear systems in the real engineering, it is very important to do more researches on the modeling and prediction of non-llnear systems. Based on the muhi-resolution analysis (MRA) of wavelet theory, this paper combined the wavelet theory with neural network and established a MRA wavelet network with the scaling function and wavelet function as its neurons. From the analysis in the frequency domain, the results indicated that MRA wavelet network was better than other wavelet networks in the ability of approaching to the signals. An essential research was carried out on modeling and prediction with MRA wavelet network in the non-linear system. Using the lengthwise sway data received from the experiment of ship model, a model of offline prediction was estab lished and was applied to the short-time prediction of ship motion. The simulation results indicated that the forecasting model improved the prediction precision effectively, lengthened the forecasting time and had a better prediction results than that of AR linear model. The research indicates that it is feasible to use the MRA wavelet network in the short -time prediction of ship motion.  相似文献   

3.
The dynamic responses of any floating platform are dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.  相似文献   

4.
A classical time-varying signal,the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency(IF) is very useful. But in noisy environments,it is hard to estimate the IF of a multi-component Chirp signal accurately. Wigner distribution maxima(WDM) are usually utilized for this estimation. But in practice,estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal IF estimation named Wigner Viterbi fit(WVF) ,based on Wigner-Ville distribution(WVD) and the Viterbi algorithm. First,we transform the WVD of the Chirp signal into digital image,and apply the Viterbi algorithm to separate the components and estimate their IF. At last,we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments,and better suppression of interference and the edge effect. Compared with WDM,WVF can reduce the mean square error(MSE) by 50% when the signal to noise ration(SNR) is in the range of -15dB to -11dB. WVF is an effective and promising IF estimation method.  相似文献   

5.
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.  相似文献   

6.
This paper is based on the fundamental loading model of pure bending and the analytical model of a circular beam element with arbitrary initial deflection. The L.W. Guo solution is modified and generalized according to the elastic theory, and the analytical solution for the stress of the beam element with arbitrary initial deflection under pure bending is derived. Using yield theory of edge strength, an expression for the safety margin of one point in the arbitrary curved beam under pure bending (ACPB) is built. This paper modifies the model for weak points of service structures and establishes a foundation for safe design and inspection of imperfect structures. Also, according to the theory of the method of advanced first-order second-moment(AFOSM) , this paper derives an expression for the reliability index of one point in ACPB. Lastly, it modifies the solution for weak points by solving the minimal reliability index.  相似文献   

7.
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji’s method(AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations.Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method(Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration(A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure.Therefore, AGM can be considered as a significant progress in nonlinear sciences.  相似文献   

8.
The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews, vessels, and cargoes; thus, it must be damped. This study presents the design of a rudder roll damping autopilot by utilizing the dual extended Kalman filter(DEKF)–trained radial basis function neural networks(RBFNN) for the surface vessels. The autopilot system constitutes the roll reduction controller and the yaw motion controller implemented in parallel. After analyzing the advantages of the DEKFtrained RBFNN control method theoretically, the ship's nonlinear model with environmental disturbances was employed to verify the performance of the proposed stabilization system. Different sailing scenarios were conducted to investigate the motion responses of the ship in waves. The results demonstrate that the DEKF RBFNN–based control system is efficient and practical in reducing roll motions and following the path for the ship sailing in waves only through rudder actions.  相似文献   

9.
The surface wave generated by flow around a ship hull moving near free surface of water is simulated numerically in this study. The three-dimensional implicit finite volume method(FVM) is applied to solve Reynolds averaged Navier-Stokes(RANS) equation. The realizable k-ε turbulence model has been implemented to capture turbulent flow around the ship hull in the free surface zone. The volume of fluid(VOF) method coupled with the Stokes wave theory has been used to determine the free surface effect of water. By using is a six degrees of freedom model, the ship hull's movement is numerically solved with the Stokes wave together. Under the action of Stokes waves on the sea, the interface between the air and water waves at the same regular pattern and so does the pressure and the vertical velocity. The ship hull moves in the same way as the wave. The amplitude of the ship hull's heave is less than the wave height because of the viscosity damping. This method could provide an important reference for the study of ships' movement, wave and hydrodynamics.  相似文献   

10.
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.  相似文献   

11.
本文介绍和讨论了舰船结构气幕减振的模型试验研究。试验模型为铝质,平底,尖首,方尾、开口薄壁型船模,试验在循环水槽中进行,通过2种吃水,2种喷气孔径,6种喷气流量,2种水流速度的选择组合,研究气幕对船模自由振动,强迫振动和振动阻尼的影响,通过对试验结果的分析整理,得到了一些重要的结论,试验表明,气幕对舰船结构的强迫振动响应有较大的抑制作用,有明显的降噪效果;气幕减振有重要的应用前景。  相似文献   

12.
船舶结构气幕减振的模型试验研究   总被引:1,自引:0,他引:1  
对船舶结构气幕减振的模型试验研究作了介绍和讨论。试验模型为铝质,平底,尖首,方尾,开口薄壁型船模,试验在循环水槽中进行,通过2种吃水,2种喷气孔径,5种喷气流量,2种水流速度的选择组合,研究了气幕对船模自由振动,强迫振动和振动阻尼的影响,试验结果表明,气幕对船舶结构的强迫振动响应有较大的抑制作用,有明显的降噪效果,气幕减振有重要的应用前景。  相似文献   

13.
三体船横摇运动   总被引:12,自引:0,他引:12  
介绍了关于三体船横摇运动的研究工作。采用能量法,由自由横摇衰减试验测量数据计算了三体船横摇阻尼系数,分析横摇过程中阻尼非线性作用的特点,讨论侧体横向布置位置、舭龙骨和航速对三体船横摇运动的影响,对线性、非线性方法用于预报三体船横摇运动进行比较分析。三体船模型横摇试验包括静水中的自由横摇衰减试验、规则波中的零速横摇试验。试验中通过系列变化侧体横向布置位置,并对侧体安装舭龙骨进行对比试验,研究侧体布置和舭龙骨对三体船横摇运动的影响。经与试验结果对比,本文对三体船横摇运动预报的结果令人满意。  相似文献   

14.
为在船体结构声学设计阶段或阻尼材料研制阶段预先评估粘弹性阻尼材料的减振效果,基于锤击法,建立平板振动试验模型,引入频响函数幅值平均衰减量参数,对3型粘弹性阻尼材料复合试样分别在不同频段内的减振效果进行对比分析。结果表明:基于损耗因数和频响函数幅值平均衰减量的粘弹性阻尼材料减振效果试验评估方法能迅速在不同频段对阻尼材料的减振性能进行排序;利用频响函数幅值平均衰减量,可对耗能机理较为复杂的约束阻尼减振效果进行评估,为结构设计或研发阻尼材料提供依据。  相似文献   

15.
三体船横摇模型试验及其特性分析   总被引:1,自引:0,他引:1  
三体船在波浪中的横摇特性和优点是三体新船型研发的技术支撑,采用模型试验和理论分析相结合的方法,对三体船横摇运动特性进行探讨。开展三体船静水横摇、正横浪零速波浪横摇模型试验,得出三体船线性、非线性阻尼假设下的横摇阻尼、频率响应和周期。通过横摇响应曲线的分析和对比,得出三体船不同侧体位置下波浪中横摇附加惯量、阻尼和运动响应、周期特性,以及侧体位置对以上各横摇特性影响的规律。研究表明:三体船横摇阻尼远大于常规单体船,而横摇运动幅值响应远小于常规单体船;侧体的横位置对三体船横摇具有显著影响,侧体纵向位置对横摇影响很小。综合考虑运动响应和横摇周期,在不规则波中三体船的横摇比常规单体船缓和得多。  相似文献   

16.
多浮体海上平台是一个典型的刚柔流耦合多振子系统,本文利用水动力软件AQWA,建立平台的数值仿真计算模型,然后对该平台进行水动力分析.结果表明,浮体响应幅值随连接件刚度变化会出现较大振荡区间现象;在低频和高频阶区域,平台附加阻尼相对较小;在高频区域内,平台幅值响应很小,稳定性良好.本文研究可以为大型海上浮体结构设计提供指导意义.  相似文献   

17.
船舶横摇阻尼是影响参数横摇和瘫船稳性等大幅横摇运动的关键参数.文中基于非定常RANS方程在静水中对模型2792进行了自由横摇衰减的数值模拟,该模型是船舶第二代完整稳性衡准制定中瘫船稳性研究的国际标准船模,数值模拟中采用了两种网格类型,一种是滑移网格,另一种重叠网格.计算结果表明,数值模拟的自由横摇衰减曲线和模型试验结果吻合良好,另外CFD计算的横摇阻尼与试验值的误差小于Ikeda's经验公式计算的误差,证明非定常RANS方程可用于预报横摇阻尼.  相似文献   

18.
穿浪双体船的中间艏采用平首结构,可以为驾驶员提供首部宽度参照,在航行或靠泊的操船过程中对水下片体进行保护。将常规双体船的平首结构应用到穿浪双体船中,形成一种国内特有的杂交穿浪双体船型,通过对穿浪双体船中间艏线型改型和模型的耐波性试验,结合平首结构的施工工艺设计和结构强度分析,解决了平首结构在穿浪双体船上的工程应用问题,为同类型穿浪船的研制提供了可借鉴的经验。  相似文献   

19.
林晔  陶晖 《船舶》2009,20(4):15-19
屈曲强度是船舶结构设计中需要着重考虑的因素之一,对于散货船来说更是如此.散货船CSR对构件屈曲强度的校核方法与标准作了明确的规定,其中在直接计算法中屈曲应力的计算采用了新的方法--位移法.文章以载重量为118 000 t散货船货舱区的外底板和底部纵桁为例,分别采用CSR的位移法和原规范的平均应力法计算其屈曲强度,并作了比较,进而说明CSR位移法对散货船结构设计的影响,具有实际参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号