首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

Passenger discomfort, suspension working space and dynamic tyre loading parameters are calculated for different combinations of spring stiffness and damping coefficient representing the suspension system in a quarter car model subject to realistic random disturbance inputs from roads of widely differing quality. Sprung and unsprung masses and the tyre vertical stiffness and damping coefficient employed derive from a current production car. Designs which are best for the specific conditions represented are identified and their performance properties in other (off-design) conditions are considered, and conventional design is explained as the inevitable consequence of the need to compromise if fixed suspension parameters are used. Performance improvements possible if variable parameters can be employed are evaluated as a function of the ranges of variability provided, and a stratagem for controlling parameters is proposed.  相似文献   

2.
发动智慧科技 彰显自主魅力   总被引:1,自引:0,他引:1  
<正>对于整车企业来说,核心竞争力的第一要素是拥有自己的动力总成,东风商用车有限公司把动力总成战略视为攸关企业存亡的根本性问题。如今,dCi 1 1和4H发动机良好的成长性表明,东风商用车有限公司励精图治多年的动力总成战略已然破局。近期,随着新产品X7的即将投产,东风商用车将拥有全功率段动力澎湃的"心脏"。  相似文献   

3.
This paper studies the use of the least damping ratio among system poles as a performance metric in passive vehicle suspensions. Methods are developed which allow optimal solutions to be computed in terms of non-dimensional quantities in a quarter-car vehicle model. Solutions are provided in graphical form for convenient use across vehicle types. Three suspension arrangements are studied: the standard suspension involving a parallel spring and damper and two further suspension arrangements involving an inerter. The key parameters for the optimal solutions are the ratios of unsprung mass to sprung mass and suspension static stiffness to tyre vertical stiffness. A discussion is provided of performance trends in terms of the key parameters. A comparison is made with the optimisation of ride comfort and tyre grip metrics for various vehicle types.  相似文献   

4.
A quarter-car model is used to investigate the vibration response of cars with uncertainty under random road input excitations in this paper. The sprung mass, unsprung mass, suspension damping, suspension stiffness, and tyre stiffness are considered as random variables. The road irregularity is considered a Gaussian random process and modelled by means of a simple exponential power spectral density. The power spectral density, mean value, standard deviation, and variation coefficient of the vehicle's natural frequencies and mode shapes are obtained by using the Monte Carlo simulation method. The computational expressions for the numerical characteristics of the mean square value of the vehicle's random response in the frequency domain are developed by means of the random variable's functional moment method. The influences of the randomness of the vehicle's parameters on the vehicle's dynamic response are investigated in detail using a practical example, and some useful conclusions are obtained.  相似文献   

5.
The linear quarter car model is the most widely used suspension system model. A number of authors expressed doubts about the accuracy of the linear quarter car model in predicting the movement of a complex nonlinear suspension system. In this investigation, a quarter car rig, designed to mimic the popular MacPherson strut suspension system, is subject to narrowband excitation at a range of frequencies using a motor driven cam. Linear and nonlinear quarter car simulations of the rig are developed. Both isolated and operational testing techniques are used to characterise the individual suspension system components. Simulations carried out using the linear and nonlinear models are compared to measured data from the suspension test rig at selected excitation frequencies. Results show that the linear quarter car model provides a reasonable approximation of unsprung mass acceleration but significantly overpredicts sprung mass acceleration magnitude. The nonlinear simulation, featuring a trilinear shock absorber model and nonlinear tyre, produces results which are significantly more accurate than linear simulation results. The effect of tyre damping on the nonlinear model is also investigated for narrowband excitation. It is found to reduce the magnitude of unsprung mass acceleration peaks and contribute to an overall improvement in simulation accuracy.  相似文献   

6.
基于舒适性和轮胎动载的车辆悬架参数优化   总被引:19,自引:1,他引:19  
为了改善汽车行驶的舒适性并减小轮胎对路面的动载,以某载货汽车为研究对象,建立了多目标优化模型,并采用统一目标函数法对车辆悬架参数进行优化。优化结果表明:优化后悬架刚度减小而阻尼增大,且前悬架参数变化较小,后悬架参数变化较大;相比于优化前,车身垂直方向加速度均方根值减小了20%,前轮动栽均方根值减小了40%,后轮变化更显著,减小了49%;采用多目标优化设计方法不仅可提高车辆自身的舒适性,而且可减小轮胎对路面的动载。  相似文献   

7.
Recent data show that 35% of fatal crashes in sport utility vehicles included vehicle rollover. At the same time, experimental testing to improve safety is expensive and dangerous. Therefore, multi-body simulation is used in this research to improve the understanding of rollover dynamics. The majority of previous work uses low-fidelity models. Here, a complex and highly nonlinear multi-body model with 165 degrees of freedom is correlated to vehicle kinematic and compliance (K&C) measurements. The Magic Formula tyre model is employed. Design of experiment methodology is used to identify tyre properties affecting vehicle rollover. A novel, statistical approach is used to link suspension K&C characteristics with rollover propensity. Research so far reveals that the tyre properties that have the greatest influence on vehicle rollover are friction coefficient, friction variation with load, camber stiffness and tyre vertical stiffness. Key K&C characteristics affecting rollover propensity are front and rear suspension rate, front roll stiffness, front camber gain, front and rear camber compliance and rear jacking force.  相似文献   

8.
Optimum values are selected for the suspension damping and stiffness parameters of complex car models, subjected to road excitation, by applying suitable numerical methodologies. These models result from a detailed finite-element discretisation and possess a relatively large number of degrees of freedom. They also involve strongly nonlinear characteristics, due mostly to large rigid body rotation of some of their components and the properties of the connection elements. First, attention is focused on gaining some insight into the dynamics of the mechanical models examined, resulting when the vehicle passes over roads involving typical geometric profiles. Then, the emphasis is shifted to presenting results obtained by applying appropriate optimisation methodologies. For this purpose, three classes of design criteria are first set up, referring to passenger ride comfort, suspension travel and car road holding and yielding the most important suspension stiffness and damping parameters. Originally, the optimisation is performed by forming a composite cost function and employing a single-objective optimisation method. Since the design criteria are conflicting, a multi-objective optimisation methodology is also set up and applied subsequently.  相似文献   

9.
The fast-paced, iterative, vehicle design environment demands efficiency when simulating suspension loads. Towards that end, a computationally efficient, linear, planar, quasi-static tyre model is developed in this work that accurately predicts a tyre's lower frequency, reasonably large amplitude, nonlinear stiffness relationship. The axisymmetric, circumferentially isotropic, stiffness equation is discretised into segments, then parameterised by a single stiffness parameter and two shape parameters. The tyre's deformed shape is independent of the overall tyre stiffness and the forces acting on the tyre. Constraint modes capture enveloping and bridging properties and a recursive method yields the set of active constraints at the tyre–road interface. The nonlinear stiffness of a tyre is captured by enforcing unidirectional geometric boundary conditions. The model parameters are identified semi-empirically; simulated cleat test loads match experiments within 7% including nonlinear stiffness when simulating a flat plate test and a discontinuous stiffness when simulating a cleat test.  相似文献   

10.
11.
12.
An alternative technique for identifying the transfer function of automotive suspension systems is presented in this paper. The method establishes a frequency response from which the transfer function can be determined by using a low cost test rig developed for the purpose. This results in a transfer function matrix which can include asymmetry in the suspension, tyre stiffness and damping. The technique is validated by comparing results for a two-wheeled trailer with those obtained on a conventional hydraulic test rig. Results from this procedure may be used to evaluate passive or active suspension systems or to feed into a suspension modelling process for such purposes as active suspension control strategy development.  相似文献   

13.
针对国产某微型轿车,在建立汽车悬架系统5自由度模型和时域路面模型基础上,对悬架系统的线性弹簧和非线性阻尼参数进行了优化。根据优化结果,对悬架系统的刚度和阻尼进行了匹配设计。经试验表明:座椅加速度自谱峰值减小7.4%,加速度均方根值减小19.4%,有效地改善了该车的行驶平顺性,证明时域优化方法对于悬架系统非线性参数优化是可行的。  相似文献   

14.
The paper derives analytical solutions for the global optimum of the ride comfort and tyre grip performance measures for a quarter-car vehicle model optimised both individually and in combination. The solutions are derived for six simple suspension networks comprising one or two springs, one damper and possibly one inerter. The solutions are functions of four vehicle parameters: the sprung mass, the unsprung mass, the tyre stiffness and the static stiffness, of the suspension.  相似文献   

15.
SUMMARY

On the basis of the brush-type tyre model the paper considers the interaction between steady-state rolling deformable wheel and flat road surface as well as corresponding force and moment characteristics of the wheel.

At least two zones of sliding, anisotropic dry friction, sliding friction coefficient speed-dependent and instantaneous leap of the friction coefficient when transition from sliding to adhesion zone occurs, have been taken into account, as well as distributed peripheral mass of tyre, elasticity, pseudo-dry friction and damping properties in radial, tangential and lateral directions of the elements at the wheel periphery, including a visco-elastic belt. Vertical force distribution in the contact area is not supposed to be known in advance and follows from the calculation. As a result, sliding zone lengths, distributed forces in contact area, six components of generalized road reaction reduced to the wheel center, and rolling resistance moment are found as functions of vertical load, movement velocity, longitudinal and side slip, friction in contact area with road, stiffnesses, dry friction and damping in the tyre model elements and of distributed peripheral mass.

A computer program developed in Fortran and results of calculations are of particular interest for qualitative analysis including steady rolling of studded tyre and also racing car and aircraft tyres which peripheral mass shows itself in a special way because of great movement velocities.  相似文献   

16.
Currently, as well as in the past, researchers have shown great interest in developing suspension systems for vehicles and especially in the design and optimization of the suspension parameters, such as the stiffness and the damping coefficient. These parameters are considered to be important factors that have an influence on safety and improve the comfort of the passengers in the vehicle. This paper describes a simplified methodology to determine, in a quick manner, the suspension parameters for different types of passenger cars equipped with passive suspension systems. Currently, different types of passenger cars are produced with different types of suspension systems. Finding a simplified methodology to determine these parameters with sufficient accuracy would contribute a simplified and quick method to the inspection of the working conditions of a suspension system. Therefore, a simple system to determine these parameters is needed. An analysis of the suspension parameters is performed using mathematical modeling and numerical analysis conducted using the Working Model software. The result derived from the developed methodology shows small errors when compared with the generic values, and it can be concluded that the design of the suspension parameter measurement device using the developed methodology is useful, simple, and has sufficient accuracy.  相似文献   

17.
This work analyses the effect of friction in suspension components on a race car vertical dynamics. It is a matter of fact that race cars aim at maximising their performance, focusing the attention mostly on aerodynamics and suspension tuning: suspension vertical and rolling stiffness and damping are parameters to be taken into account for an optimal setup. Furthermore, friction in suspension components must not be ignored. After a test session carried out with a F4 on a Four Poster rig, friction was detected on the front suspension. The real data gathered allow the validation of an analytical model with friction, confirming that its influence is relevant for low frequency values closed to the car pitch natural frequency. Finally, some setup proposals are presented to describe what should be done on actual race cars in order to correct vehicle behaviour when friction occurs.  相似文献   

18.
A systematic methodology is applied in an effort to select optimum values for the suspension damping and stiffness parameters of two degrees of freedom quarter-car models, subjected to road excitation. First, models involving passive suspension dampers with constant or dual rate characteristics are considered. In addition, models with semi-active suspensions are also examined. Moreover, special emphasis is put in modeling possible temporary separations of the wheel from the ground. For all these models, appropriate methodologies are employed for capturing the motions of the vehicle resulting from passing with a constant horizontal speed over roads involving an isolated or a distributed geometric irregularity. The optimization process is based on three suitable performance criteria, related to ride comfort, suspension travel and road holding of the vehicle and yielding the most important suspension stiffness and damping parameters. As these criteria are conflicting, a suitable multi-objective optimization methodology is set up and applied. As a result, a series of diagrams with typical numerical results are presented and compared in both the corresponding objective spaces (in the form of classical Pareto fronts) and parameter spaces.  相似文献   

19.
A systematic methodology is applied in an effort to select optimum values for the suspension damping and stiffness parameters of two degrees of freedom quarter-car models, subjected to road excitation. First, models involving passive suspension dampers with constant or dual rate characteristics are considered. In addition, models with semi-active suspensions are also examined. Moreover, special emphasis is put in modeling possible temporary separations of the wheel from the ground. For all these models, appropriate methodologies are employed for capturing the motions of the vehicle resulting from passing with a constant horizontal speed over roads involving an isolated or a distributed geometric irregularity. The optimization process is based on three suitable performance criteria, related to ride comfort, suspension travel and road holding of the vehicle and yielding the most important suspension stiffness and damping parameters. As these criteria are conflicting, a suitable multi-objective optimization methodology is set up and applied. As a result, a series of diagrams with typical numerical results are presented and compared in both the corresponding objective spaces (in the form of classical Pareto fronts) and parameter spaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号