首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
停放制动是防止列车在静止状态下发生溜逸的一种制动方式。动车组上广泛采用空气制动缸与停放制动缸一体化结构的制动夹钳单元,由弹簧储能式停放制动缸来实现停放制动力输出,由空气制动缸实现空气制动力输出。基于某型高速综合检测车现状,对其设计了一种停放制动功能的方案,并根据方案中该型高速综合检测车停放制动夹钳单元的配置进行了停放制动力校核计算,为实现停放制动功能,对相关的硬件设备、电气原理和软件控制逻辑进行了优化设计。此外,利用AMESim软件对方案中停放制动的功能进行了验证并与试验台数据进行对照。  相似文献   

2.
1 前言 KZW-4G型货车空重车自动调整装置是安装在货车上以取代手动空重车转换机构.它是根据随车辆载重变化的枕簧(轴箱弹簧)高度变化作为控制信号,通过测重机构去控制设在空气制动机与制动缸之间的调整阀,由调整阀来控制制动缸空气压力的大小,从而使车辆在不同载重的状况下获得相应的制动力.即使在列车速度较高时,处于不同载重状况下的车辆既不会因制动力太大而擦伤车轮,也不会因制动力不足而不能保证在规定的制动距离内停车.总之,它使不同载重的车辆的制动率趋于一致,从而能有效地改善车辆的制动性能.  相似文献   

3.
高速动车组检修时发现制动缸的停放制动力输出不足,对停放制动夹钳单元检修时发现,停放弹簧力值的衰减是停放制动缸输出力不足的主要原因。研究发现,停放弹簧力值衰减的主要原因是弹簧应力松弛,而导致弹簧应力松弛的主要因素是弹簧长期处于高应力区工作。为优化弹簧应力松弛表现,提出通过更换材料和工艺的方法降低弹簧高应力区表现。最后,通过应力松弛对比试验对优化方案进行验证,得到改善停放弹簧力值衰减的方法,有效地降低了停放制动夹钳单元的维护成本。  相似文献   

4.
易文生 《铁道车辆》2005,43(8):38-39
25K型客车由于采用了气动式塞拉门、空气弹簧、电空阀、气动式冲便阀和防滑器等装置,造成客车上使用压缩空气的设备越来越多,若仅仅依靠从副风缸或从制动管得到压缩空气,既增加了机车空气压缩机的负担(启动频繁),又影响车辆制动装置的性能。所以,25K型客车采用的是双管路供风,即制动用压缩空气与车辆其他设备用压缩空气分开。25K型客车的空气管路由总风管系统和制动管系统组成,  相似文献   

5.
针对现有铁路货车空气制动缸存在泄漏、缓解性能与制动效率相制约、制动力一致性差等技术问题,并结合研发重载列车纯电制动系统的需求,研制出了一种以电能替代压力空气的多功能电制动缸。该多功能电制动缸采用具有精准输出能力的伺服直流电机以及具有单向自锁特性的蜗轮蜗杆传动结构,实现了多功能、高集成、准输出设计,具有自动驻车、自动制动及缓解、手动制动及缓解、自动调整闸瓦间隙等功能,同现有空气制动缸相比,制动力输出一致性好,功能多,智能化、集成化程度高,检修周期长,安全可靠性高。  相似文献   

6.
JKG系列空气干燥装置是DF4C型内燃机车空气制动系统必备的重要装置之一,它能够有效地消除压缩空气中的尘埃、水蒸汽和油污,提高压缩空气的质量,减少对制动管路及各阀件的锈蚀,确保制动系统各阀件的作用安全、可靠,延长制动系统各阀件的使用寿命,从而确保机车车辆的运行安全。但在机车运用过程中,空气干燥装置中的排气阀、排污阀、电磁阀等发生故障均会造成空气干燥装置排风不止。此时,若乘务员不能正确处理故障,机车总风缸就充不到规定风压,致使空气压缩机连续运转打风,直至打坏气阀,最终导致机车因无制动风源而无法施行制动,严重影响着列车运行安全。如2002年7月DF4C4266机车在济西-水屯间因空气干燥装置油水分离器电磁排污阀排风不止,乘务员切除不当造成机破;同年10月DF4C4151机车也因干燥器排气阀排风不止造成临修(机破因素)。  相似文献   

7.
针对轨道交通车辆传统弹簧蓄能式停放制动夹钳单元体积大、重量高等特性,对制动夹钳单元关键零部件和冗余的停放弹簧机构进行结构简化,设计并试制了带有新的制动夹钳总成和锁止式停放制动缸的制动夹钳单元。通过有限元理论计算和各项型式试验,验证了该新型制动夹钳单元各项性能参数满足轨道交通车辆使用要求。研究结果表明新设计的制动夹钳单元减重占比39.5%,其停放制动输出力效率超过90%,具有更好的灵活和使用性,研究为后续制动夹钳单元轻量化设计提供了参考和理论依据。  相似文献   

8.
新加坡电力蓄电池双能源工程车制动系统   总被引:2,自引:0,他引:2  
介绍了新加坡电力蓄电池双能源工程车制动系统,重点阐述了制动操纵方式和模式,均衡风缸、列车管、制动缸压力的控制原理以及停放制动、防滑控制和其它功能。  相似文献   

9.
田振国 《铁道车辆》2012,50(9):40-42
2011年以来,中国神华铁路货车运输分公司神木北车辆段列检车间和肃宁北车辆检修中心列检车间在日常技检作业过程中,经常发现运用货车装用的调整阀总成阀体双耳根部存在不同程度的裂损现象。调整阀总成是KZW系列货车空重车自动调整装置的重要组成部分。车辆制动时,调整阀受来自120阀制动孔的压力空气、降压风缸的压力空气及进入到制动缸的压力空气的共同作用,控制制动缸的空气压  相似文献   

10.
新时速X2000电动车组拖车转向架(续完)   总被引:1,自引:0,他引:1  
杨榆 《铁道车辆》2004,42(2):26-30,44
空气弹簧由车底架上的供风管经高度调整阀供风,在车底架上每个空气弹簧的相应位置各安装有一个容积为40L的空气弹簧风缸。随着车体载重量的变化,高度调整阀能够控制空气弹簧内压力空气的充排,使空气弹簧始终保持在设定的高度。在车体枕梁上的空气弹簧安装接口上设有O形密封圈安装座。  相似文献   

11.
作为铁路车辆基础制动系统的重要部件,ST系列双向闸瓦间隙自动调整器(以下简称闸调器)在国内各种铁路车辆广泛采用已有20余年的历史。闸调器能将闸瓦与车轮之间的间隙自动调整到规定的正常数值,使制动缸活塞行程保持在规定的范围内,而确保必需的制动力及在规定的制动距离内平稳停车,保证了行车安全。闸调器的应用大大减轻了列检人员繁重的体力劳动,对车辆运行安全起了至关重要的作用。  相似文献   

12.
空气制动系统对铁道车辆安全运行至关重要。然而,通过管道分配压缩空气使制动缸充满则需要一定量的时间。认为它是一种可对安全性、稳定性、节能和减少维护工作量等产生极大好处的高效系统。因此,本研究为供给压缩空气,控制铁道车辆目前安装的车轮滑行保护系统(WSP)防滑阀,而提出一种降低系统响应时间的新方法。还试图针对应用WSP系统的情况,减少空气制动系统耗气量。通过实车试验和混合模拟等对新方法的优点进行了验证。结果表明所提议的方法缩短了响应时间,减少了耗气量,并且改善了制动性能。  相似文献   

13.
提出利用接触网作业车本身空气制动系统的气源,给检修接触网设备的气动工具提供动力。并设计压力保护回路,确保空气制动系统的总风缸气压不低于一定压力,以保证行车安全。  相似文献   

14.
车轮防滑保护可以在轮轨黏着突然降低情况下减少制动力,防止车轮擦伤,并充分利用黏着以缩短制动距离,是列车制动系统的核心技术之一。架控制动系统将防滑阀和制动阀合二为一,具有较高集成化,无独立防滑阀,此时如何有效地实施防滑保护控制,将关乎到架控制动系统的运行安全。因此,本文设计了一种架控空气防滑控制策略,满足了架控制动系统对防滑控制的要求。仿真测试和实车试验的结果已验证了该架控空气防滑控制策略的有效性和可靠性。  相似文献   

15.
介绍了齐齐哈尔轨道交通装备有限责任公司(以下简称:齐轨道装备公司)出口新西兰铁路货车装用的120AK型空气制动系统,并针对与西屋澳洲公司的WF阀混编时制动缸充、排气时间不一致的问题,对120AK型货车空气控制阀(以下简称120AK阀)进行了研究改进。  相似文献   

16.
基于制动系统气制动原理,参考用于上海轨道交通1号线6改8工程增购列车的克诺尔EP 2002架控制动系统,运用AMESim仿真软件,对架控制动系统的供风、停放制动模块,以及制动控制模块中的远程缓解、紧急冲动限制、制动、连通等模块进行建模,进而对架控制动系统气制动整体建模。仿真分析常用全制动、紧急制动、停放制动等制动模式,并与EP2000架控气制动系统设计指标进行对比。仿真结果验证了系统的常用全制动、紧急制动和停放制动等制动模式与1号线车辆的设计指标相符。  相似文献   

17.
重载列车在制动时,由于列车前后部制动力不一致而产生巨大的车钩力和剧烈的纵向冲动,极易造成列车断钩和脱轨事故。研究利用电力线作为通信介质,采用网络控制系统和每辆车作为一个网络节点,结合我国货车120空气制动机,实现有线电控空气制动。研究表明:由电控空气制动系统(ECP系统)控制列车制动,列车中所有车辆的制动和缓解动作几乎同步进行,全部车辆制动缸开始升、降压的时间差在0.2 s以内;在网络条件允许的范围内,装有ECP系统的车辆制动和缓解的同步性不受列车编组辆数的影响,各车辆制动缸的升压、降压曲线形状几乎相同;车辆制动缸压力的控制精度达到制动命令要求值的±20 kPa。由于ECP系统实现了对列车制动和缓解的同步控制,能够保证长大重载列车安全运行。  相似文献   

18.
高速动车组与内燃、电力机车等传统牵引动力设备有显著区别,其控制、制动系统的设计理念体现出操作简便和导向安全的原则,在转向架结构、车体轻量化、列车动力分配、电传动控制技术、列车信息网络及制动系统都包含独特的核心技术。现对CRH2型动车组制动系统特性谈一些粗浅的看法。一、制动模式针对性强,趋于智能化CRH2型动车组的制动系统具有多种制动控制方式,可以满足不同运行条件下对列车制动的需求。行车中,动车组制动控制装置能接受列车信息网络或司机操纵动作等指令,进行常用制动、快速制动、紧急制动、耐雪制动等相应的制动动作。1.常用制动特性。常用制动的制动力共分为7级,行车操纵中使用机会最多。系统在制动时自动进行延迟充气控制,M车(动车)上产生的电气再生制动除满足本车制动力要求外,多余制动力用来代替T车(拖车)的一部分制动力,T车制动力不足时则由其空气制动力补充,从而维持本制动单元(一个动车和一个拖车构成一个制动单元)所需要的制动力,并实现和保持规定减速度。另外制动系统还具有空、重车载荷适应功能,制动力能够自动按需变化,维持一定的减速度。2.快速制动特性。动车组的快速制动功能,具有比常用制动高1.5倍的制动力。在司机操作制动手柄...  相似文献   

19.
介绍了上海地铁车辆采用的德国克诺尔制动机公司生产的模拟式电控制动系统主要组成部件及作用原理。其中,微处理制动控制与车轮滑行控制电子单元KBGM-P,以及制动控制单元BCU是该模拟式电控制动系统的核心控制部件。制动控制单元的所有部件集中地装在一个单独的具有气路的集成板上,改变了铁路传统的制动控制阀(分配阀)的结构设计。此外,单筒式无热再生工况的空气干燥装置以及带停放制动器的制动缸都具有一定的特点。  相似文献   

20.
应用重载列车空气制动与纵向动力学联合仿真系统,分析了常用制动时,一段局减孔、二段局减孔和局减阀弹簧对列车制动特性和纵向冲动的影响.常用制动时,一段局减孔面积增加90%,尾车列车管排气时间减少约7%,尾车制动缸达到平衡所用时间减少约10%,最大压钩力减小3.30%~4.84%.二段局减孔面积对列车制动特性和纵向冲动影响很小.局减阀弹簧工作弹力从35.8N增加到90.8N时,尾车列车管排气时间减少10.04%~18.24%,尾车制动缸达到平衡的时间减少19.25%~34.43%,压钩力减小3.30%~11.63%.局减阀弹簧工作弹力对重载列车车钩力影响最大,局减阀弹簧工作弹力越大,车钩力越小;一段局减孔径对车钩力影响次之,孔径越大,车钩力越小.二段局减孔径对车钩力影响很小.该研究为重载列车用新分配阀的设计和发展提供了方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号