首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为分析机车牵引力对轮轨关系的影响,在SIMPACK多体动力学软件中分别建立了基于60钢轨和60N钢轨的"机车-轨道"耦合动力学模型,设定了水平轨道和坡道通过曲线的2种工况,分析机车牵引力与轮轨蠕滑关系、最大法向接触应力和RCF损伤系数的关联度。计算结果表明:增加牵引力使轮轨纵向蠕滑率和纵向蠕滑力迅速增加,横向蠕滑力降低,机车在60N钢轨上运行时变化尤为明显;钢轨内侧纵向蠕滑力受牵引力作用方向改变,引起钢轨内侧裂纹方向改变;相比60钢轨,60N钢轨抵抗磨耗的能力较强,但容易产生滚动接触疲劳。  相似文献   

2.
钢轨波磨的试验研究   总被引:4,自引:0,他引:4  
张波  刘启跃 《铁道学报》2003,25(1):104-108
钢轨波磨受多种因素的影响,本文采用赫兹模拟准则进行实验室模拟研究,通过振动功率谱的分析,指出载荷、转速、蠕滑率对钢轨波磨波长的影响。分析了波磨的形成原因,指出轮轨系统的振动和轮轨接触表面之间的切向力的共同作用是波磨形成和发展的主要因素。  相似文献   

3.
针对柔性轨道下因谐波磨耗车轮激励而引发钢轨和轮对振动时的轮轨蠕滑问题,在分析柔性轨道下轮轨间滚动接触振动对轮轨蠕滑特性影响机理的基础上,基于CRTS型双块式无砟轨道和CRH2型高速列车,采用ANSYS和UM软件建立柔性轨道下高速列车的动力学数值模型;选取6种典型谐波磨耗(阶数分别为1,6和11阶;对应波深分别为0.1和0.3mm)车轮,进行轮轨滚动接触振动特性、轮轨蠕滑力和蠕滑率的分析。结果表明:车轮谐波磨耗阶数和波深的增加均导致钢轨垂向加速度、轮对垂向加速度、轮轨垂向力及轮轨蠕滑力和蠕滑率的大幅增加,且与阶数的影响相比,波深对滚动接触蠕滑特性的影响更大;当车轮的谐波磨耗取11阶和0.3mm波深时,轮轨垂向力最大值、钢轨垂向加速度最大值、轮对垂向加速度最大值和平均值、纵向蠕滑率平均值、纵向蠕滑力绝对平均值、横向蠕滑力最大值、纵向蠕滑力最大值分别约为车轮无谐波磨耗时的7.27,49.6,20.35,15.18,7.8,9.064,6.7和8.57倍;考虑柔性轨道后,轮轨接触脱离时间明显增加,轮轨蠕滑率和蠕滑力也有明显增大。  相似文献   

4.
为了解机车在牵引工况下轮轨的蠕滑特征,本文采用线性蠕滑理论和非线性修正方法,推导出轮轨接触的蠕滑力公式,结合磨耗型踏面的轮轨接触几何特征,采用Simpack多体动力学软件建立DF8B型三轴转向架机车动力学模型,进行动力学仿真验证。研究发现:传统转向架机车在牵引工况通过曲线时,导向轮对外侧车轮轮缘根部接触钢轨,总的蠕滑力处于饱和状态;当轮轨接触总的蠕滑力饱和时,牵引力会引起轮轨接触界面的纵向和横向蠕滑力重新分配,牵引力越大,纵向蠕滑力越大,横向蠕滑力越小。惰行工况下导向力矩最大,随着牵引力的增加,导向轮对的导向力矩逐渐减小。  相似文献   

5.
基于轮轨蠕滑最小化的钢轨打磨研究   总被引:1,自引:0,他引:1  
根据对轮轨蠕滑形成机理的研究,指出轮轨接触的滚动半径差是影响轮轨蠕滑的重要参数;利用车辆动力学软件NUCARS和选用不同钢轨廓形,仿真计算滚动半径差对轮轨关系的影响,据此提出应通过钢轨打磨,消除或减弱轮轨蠕滑,从而实现轮轨关系的改善,达到延长钢轨使用寿命的目的.理论计算和现场钢轨打磨试验表明,在大秦重载铁路实施钢轨打磨后,滚动半径差减小,钢轨的廓面形状与车轮形成贴合型接触,降低了轮轨蠕滑力和横向力以及轮轨滚动阻力,改善了轮轴转向特性,使钢轨的平均侧磨减少了将近50%,钢轨的通过总重从9×108 t增加到15×108 t以上.  相似文献   

6.
由于铁路系统的开放性,轮轨界面难以避免遭受第三介质(如水、油、雪等)的侵袭,轮轨蠕滑特性将因此改变。为研究轮轨蠕滑曲线对车辆-轨道动态相互作用的影响,首先,基于最小二乘法原理获得适用于Polach接触模型的参数,以模拟水介质条件下40~400 km/h行车速度范围内的实测轮轨蠕滑曲线;随后,采用SIMPACK多体动力学仿真软件建立车辆-轨道动力学模型,利用FASTSIM算法和Polach模型分别模拟理想条件与实测轮轨蠕滑曲线,以300 km/h运行速度为例,详细对比这两种蠕滑曲线条件下车辆-轨道动态相互作用的差异,并进一步分析运行速度的影响。研究表明:车辆运行速度为300 km/h时,实测轮轨蠕滑曲线对应的轮对横移量和轮对摇头角分别为干态工况结果的1.375倍和3.2倍,进而导致纵/横向蠕滑率明显大于干态工况结果;速度所致轮轨蠕滑曲线的差异对轮轨蠕滑力、脱轨系数以及磨耗指数影响较大,速度为160 km/h时尤为显著。因此,在进行车辆-轨道耦合动力学仿真分析时,有必要考虑实测的轮轨蠕滑曲线。  相似文献   

7.
变摩擦系数条件下的轮轨滚动接触特性分析   总被引:3,自引:0,他引:3  
采用mixed Lagrangian/Eulerian方法建立轮轨滚动接触有限元模型,在轮轨间使用与滑动速度相关的变摩擦系数定义切向接触属性,改变轮对角速度定义轮轨接触不同工况。在轮轨蠕滑工况下,通过对比取常系数摩擦系数和变摩擦系数的计算结果发现:变摩擦系数对轮轨滚动接触最大接触应力和接触斑面积影响较小;但是对轮轨接触斑内最大Mises应力、最大纵向切应力、最大横向切应力和蠕滑力影响较大,特别是对最大纵向切应力和蠕滑力影响幅度近20%;对轮轨滚动接触蠕滑力矢量分布的影响也应值得注意。不同工况时轮轨蠕滑率不同,变摩擦系数条件下的轮轨蠕滑力和剪切应力随蠕滑率增大而增大,当轮轨间出现完全滑动时,轮轨蠕滑力达到极限。  相似文献   

8.
以LMA型踏面车轮和CHN60钢轨为对象,基于有限元软件ABAQUS,采用mixed LagrangianEulerian法,分析全滑动制动、全滑动牵引、蠕滑制动以及蠕滑牵引4种工况下的高速列车轮轨稳态滚动接触蠕滑特性。结果表明:全滑动制动工况下纵向蠕滑力的合力为蠕滑制动工况下的6.5倍左右,全滑动牵引工况下纵向蠕滑力的合力为蠕滑牵引工况下的1.7倍左右;接触斑内的蠕滑力矢量在全滑动工况下均指向同一方向,制动时与运动方向相反,牵引时与运动方向相同,而在蠕滑工况下其存在自旋效应;全滑动工况下的纵向蠕滑率均大于蠕滑工况下的,而蠕滑工况下的横向蠕滑率均远大于全滑动工况下的;纵向蠕滑率在全滑动工况下的分布只有1个峰值区域,而在蠕滑工况下则存在2个峰值区,前一工况下的横向蠕滑率分布区域较散,数值相当小,最大仅为0.064%,而后一工况下的分布则相对集中,其最大值可达0.287%。  相似文献   

9.
易波 《铁道建筑》2007,(12):91-93
一般认为产生曲线钢轨侧磨的主要因素是车轮对钢轨的冲击角和轮轨的两点接触。但在半径〉1 200 m的曲线地段,同样存在轮轨的两点接触和冲击角,却没有发生钢轨侧磨现象。文章从曲线上轮轨间接触形式、轮对运行行为、车轮与钢轨间的相互作用力以及轨道参数等方面进行分析,指出了蠕滑力偶对钢轨侧磨的影响。  相似文献   

10.
高速轮轨粘着机理试验研究   总被引:5,自引:0,他引:5  
系统介绍了在滚动振动试验台上所进行的1:1实物模型高速轮粘着机理试验情况,试验包括干净表面、水润滑和油润滑三种轮轨表面状态在不同轴重、不同速度工况下的粘着试验。试验不仅得到了完整的粘着力(粘着系数)与蠕滑率的关系,同时得到了粘着系数与运行速度的关系。最后,通过拟合轮轨接触函数型摩擦系数并进行计算,首次使轮轨接触粘着计算与试验结果一致。  相似文献   

11.
为对比分析铁路货车在60 kg/m和60N钢轨上的轮轨动力学性能,以C70货车为例,采用SIMPACK多体动力学软件建立基于60 kg/m和60N钢轨的货车-轨道耦合动力学模型,计算轮轨几何接触关系、车辆运行稳定性和平稳性、轮轨作用力等。计算结果表明:LM车轮踏面与60N钢轨匹配时,轮轨接触点靠近轨面中心,车辆运行有更高的稳定性和平稳性;车辆通过曲线时,车辆在60N钢轨上的轮轨接触斑面积较大,轮轨间的垂向作用力、横向作用力较大,通过小半径曲线时轮轨横向蠕滑力较大;车辆与60 kg/m钢轨之间的总蠕滑力、纵向蠕滑力、最大法向接触应力和磨耗指数较大,加剧了60 kg/m钢轨的磨损。  相似文献   

12.
为了进一步考虑粗糙表面对轮轨蠕滑的影响,从微凸体的微米尺度跨越到米的尺度,着力于摩擦的物理学本质,建立干摩擦工况下的轮轨蠕滑力的二维动态计算模型。通过微凸体接触与断开来模拟轮轨接触的滚滑运动,讨论不同速度、蠕滑率、轮轨表面粗糙度参数等因素对轮轨黏着系数的影响,对每个因素造成的轮轨牵引系数的变化进行数值分析。在中低速情况下,通过对线路测量数据和实验室JD对滚机数据与模型计算结果的对比,验证了模型的有效性。结果表明随着速度的增大,黏着系数随之下降;适当增加轮轨表面粗糙度能提高轮轨间的黏着系数;同时以非人为划分的方式重现接触斑内牵引系数变化的过程,从黏着区到滑动区的过渡过程。  相似文献   

13.
机车车辆轮—轮与轮—轨接触关系的比较   总被引:2,自引:0,他引:2  
滚动振动试验台进行车机车车辆动力学性能测试时,由于用有限半径的轨道轮代替平直轨道,即使在所有模拟参数与实际线路完全一致的情况下,其动力学性能测试结果仍存在误差,本文从轮轨接触几何参数,重力刚度、轮轨接触斑几何何形状及蠕滑特性等多方面分析轮-轨和轮-轮工况的差异以及由此而产生对机车车辆动力学性能参数的影响,根据计算结果,可对滚动振动试验台的标定提供定量的参考。  相似文献   

14.
轮轨干摩擦下的轮对横向自激振动机理   总被引:1,自引:0,他引:1  
从轮轨间干燥接触情况出发,建立具有2个自由度的轮轨干摩擦下弹性定位轮对横向自激振动模型,并采用摩擦系数—蠕滑速度经验公式描述轮轨之间干摩擦力与蠕滑率的关系,进而从能量的角度研究轮对横向自激振动的形成机理。研究表明:轮轨系统中由蠕滑速度主导的反馈机制是产生轮对横向自激振动必不可少的条件;引发轮对横向自激振动的能量来自列车向前运动的一部分能量,并由摩擦力中的刚度力通过轮轨纵、横向蠕滑率的调节作用被输入到轮对中;轮对横向自激振动的稳定性取决于轮轨系统等效阻尼耗散的能量和摩擦力中刚度力输入的能量,轮轨摩擦力做功的正负将影响轮轨系统的稳定性。  相似文献   

15.
钢轨扭转运动对轮轨动态相互作用的影响   总被引:1,自引:0,他引:1  
运用耦合动力学理论,仿真分析钢轨扭转变形对机车车辆曲线通过和直线运行时的轮轨动态相互作用的影响。研究结果表明:机车车辆通过曲线轨道时,产生了较大的扭转幅值,将增大轨距动态挤开量,并且扭转速率也很明显,进一步影响轮轨蠕滑率;对于曲线通过的轮轨动态相互作用性能,考虑扭转变形的指标值较不考虑扭转变形的值要小,差异在10%以内;机车车辆在直线轨道上运行时,钢轨扭转变形对轮轨接触点分布的影响较明显,但钢轨微小扭转变形对轮轨动态安全性指标影响不大;钢轨向内侧略微翻转,有利于改善直线轨道上的轮轨接触几何关系。  相似文献   

16.
提出了一种以轮轨蠕滑温升为目标,车辆动力学性能为约束条件的机车车轮踏面优化方法,并通过数值算例分析了影响轮轨摩擦温升的主要因素,表明轮轨接触斑形态与轮轨蠕滑温升及接触应力呈正相关,减小轮轨接触斑纵轴长度能够明显减小轮轨蠕滑温升,缓解车轮踏面剥离。  相似文献   

17.
为研究高速铁路CHN60N钢轨廓形与不同车轮踏面(LMA、S1002CN和XP55)的匹配性能,从轮轨接触几何关系角度分析轮轨接触点、等效锥度和轮轨接触蠕滑率随轮对横移的变化情况,并基于轮轨非赫兹滚动接触理论分析轮轨滚动接触面积和最大法向接触应力分布情况,利用车辆-轨道耦合动力学模型分析车辆运行平稳性、曲线通过能力及轮轨接触点动态分布情况。研究表明:XP55车轮踏面与CHN60N钢轨综合匹配性能最优;由于曲线通过性能与其他两种型面相差较大,LMA车轮踏面与CHN60N钢轨综合匹配性能次之;S1002CN踏面与CHN60N钢轨匹配时,由于车辆直线运行舒适性最差,滚动接触时表面疲劳因子明显大于其他两种车轮型面,易导致轮轨表面产生疲劳伤损,综合匹配性能最差。  相似文献   

18.
以广州地铁1号线车轮和钢轨为例,运用有限元软件建立三维轮轨滚动接触有限元模型,对不同牵引力和不同横移量的轮轨滚动接触特性进行计算分析.结果表明牵引力改变轮轨接触Mises应力的分布;随着牵引力的增大,接触斑纵向摩擦力分量明显增大,接触斑后部最先出现蠕滑区,牵引力越大接触斑黏着区越小,蠕滑区越大;在横移为-5~5 mm范围内,接触斑分布在车轮踏面倾斜角为1∶46的斜面上,从这个角度看,该踏面与CHN60钢轨匹配并没有完全发挥磨耗型踏面增大接触面积、减小接触应力的作用.  相似文献   

19.
任利惠  谢纲 《铁道学报》2012,34(5):32-40
轮轨非稳态滚动接触是指接触斑内的质点在滚动接触过程中,接触斑的外形和其他参数产生快速变化的过程,这时运动波长L与接触斑纵轴半径a处于同一数量级。本文使用Kalker三维滚动接触理论计算轮轨蠕滑率、法向力、钢轨轨面接触几何简谐激励时的非稳态蠕滑力,并与由稳态滚动接触理论计算的结果进行比较。其结果表明:在小蠕滑状态下,非稳态滚动接触的蠕滑力随L/a(简称波长比)的增长而产生明显的幅值衰减和相位滞后。在蠕滑率和钢轨轨面接触几何简谐激励时,非稳态蠕滑力的变化规律可用波长比L/a的传递函数描述,而法向力情况却不能。对于短波波磨等非稳态滚动接触行为,应使用非稳态滚动接触理论进行分析。  相似文献   

20.
轮轨接触力学的最新发展   总被引:6,自引:0,他引:6  
文章重点讨论车轮/钢轨的流动接触问题,着重介绍了如何处理轮轨材料变化、磨损和蠕滑现象,并详细介绍了各种方法,包括最新遵循拉格朗日-欧拉原理的有限元法。最后给出了关于轮轨破坏的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号