首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

2.
Time-series samples of settling particles were collected in the water column of Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) with two sediment traps on taut-line moorings deployed at two different depths (60 and 280 m) between May 26 and June 27, 2004. Average total polycyclic aromatic hydrocarbon (PAH) concentrations of upper and lower trap array samples were 310 ± 61 ng g− 1 dw (range: 200–440) and 240 ± 36 ng g− 1 dw (range: 180–290), respectively. Principal component analysis results suggest that PAH sources in the trap-collected particles included diesel vehicle/coal burning, diagenetic sources, and petroleum release. PAH downward fluxes based on settling particles were estimated to be 12–44 μg m− 2 d− 1. These values are higher than those reported in the literature for most coastal areas. During the sampling period, both traps were significantly tilted by tidal current and fluctuated vertically. The upper traps experienced greater vertical movements, thus their particle characteristics (e.g., POC, particle mass, and fine particle fraction) varied more than those of the lower traps. Hourly depth variations of the tilted sediment trap array were echoed by the corresponding total PAH concentrations. Moreover, the PAH composition of the collected particles was related to the flow direction and speed. These observations suggest that PAHs can be used as an effective chemical tracer for the transport of terrestrial and marine particulates in a complex aquatic environment like Gaoping (Kaoping) Submarine Canyon.  相似文献   

3.
Data from five separate field experiments during 2000–2006 were used to study the internal tidal flow patterns in the Gaoping (formerly spelled Kaoping) Submarine Canyon. The internal tides are large with maximum interface displacements of about 200 m and maximum velocities of over 100cm/s. They are characterized by a first-mode velocity and density structure with zero crossing at about 100 m depth. In the lower layer, the currents increase with increasing depth. The density interface and the along-channel velocity are approximately 90° out-of-phase, suggesting a predominant standing wave pattern. However, partial reflection is indicated as there is a consistent phase advance between sea level and density interface along the canyon axis.  相似文献   

4.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

5.
Ninety-two box cores collected during 2004–2006 from an area of ~ 3000 km2 off the Gaoping (formerly spelled Kaoping) River, SW Taiwan, were analyzed for fallout radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation rates and processes, and for the calculation of a sediment budget. The study area is located at an active collision margin with a narrow shelf and a submarine canyon extending essentially into the river's mouth. The results indicate fairly constant hemipelagic sedimentation in much of the open margin and for most of the time except in the inner shelf and along the axis of the canyon where sediment transport is more dynamic and is controlled by tidal current and wave activities constantly, and by fluvial floods or gravity-driven flows episodically. Sedimentation rates in the study area derived from 210Pb and constrained by 137Cs vary from 0.04 to 1.5 cm/yr, with the highest rates (> 1 cm/yr) flanking the Gaoping canyon over the upper slope (200–600 m) and the lowest rates (< 0.1 cm/yr) in the distal basin beyond the continental slope. The depocenter delineated from 210Pb-based sedimentation rates overlaps with the area covered by a flood layer resulting from super-typhoon Haitang in July 2005. Such correspondence supports the notion that the processes operating on event timescale have bearing on the formation of the sediment strata over centennial or longer timescales.From the distribution of sedimentation rates, sediment deposited in the study area annually is estimated to be 6.6 Mton/yr, accounting for less than 20% of Gaoping River's sediment load. The calculated budget, coupled with the presence of the short-lived 7Be and non-steady-state distribution of low levels of 210Pb in sediments along the canyon floor, suggests rapid transport of sediment from Gaoping River's mountainous watershed (the source) via the Gaoping (Kaoping) Submarine Canyon and adjacent channels (as the conduit and temporary sink) to the abyssal plain and the Manila Trench in the South China Sea (the ultimate sink).  相似文献   

6.
Mapping the water constituents from remotely sensed ocean color data enables a better understanding of the dispersal patterns of river-borne substances in the Gaoping (formerly spelled Kaoping) River, Shelf and Canyon (KPRSC) system. Based on twelve MODIS-Aqua images in the KPRSC region taken in 2005, we apply a newly developed GA-SA approach to derive maps of chlorophyll-a concentration (Chl-a), colored dissolved organic matter (CDOM) and non-algal particle/detritus/mineral (NAP). The results demonstrated that the different characteristics of Chl-a, CDOM and NAP make them ideal tracers for observing large-scale dispersal patterns. With ancillary information of averaged daily precipitation, the daily wind field obtained from QuikSCAT (Quick Scatterometer), and the 8-day composite of the temperature field obtained from MODIS-Aqua, we categorized the surface dispersal patterns as coastal, northwestward and frontal patterns. Also, for the first time, we observed a sudden increase of biomass on a large scale from a pair of ocean color images taken over only a 2-day interval. Another remarkable feature is the interaction between the southeastward flow and the intrusion of the Kuroshio Branch, resulting in complicated patterns with various scales of vortex structures and current fronts. The observed features could be used for model validation of the flow field of the KPRSC system.  相似文献   

7.
Surface and box-cored sediments were collected along the Gaoping (formerly spelled Kaoping) Estuary–Canyon system and analyzed for As and Hg contents and speciation, 210Pb-based sedimentation rates and various geochemical parameters to elucidate the mechanisms that control natural and anthropogenic inputs of As and Hg from the Gaoping (Kaoping) River (KPR). The contents of As and Hg in surface sediments ranged from 1.84 to 20.7 mg kg− 1 and from 0.07 to 2.15 mg kg− 1, respectively, in the estuary and canyon. The concentrations generally decreased from the lower river toward the mixing boundary and then increased toward the estuarine mouth, followed by a slight variation in the canyon. Both As and Hg concentrations correlated strongly with clay, total organic carbon (TOC), Al, Fe and Mn contents in estuarine sediments but not necessary the same cases for canyon surface sediments. The factor analysis of surface sediments shows that the first two factors, which account for 75.6% of the variance, may represent major roles of carriers (clay, Al and Fe–Mn oxides) and TOC in controlling As and Hg distributions, respectively. Accordingly, the spatial patterns of the enrichments of As (1.9–16.2) and Hg (1.8–30.8) with reference to the crust levels follow the individual element's distribution patterns, likely because of deposition variability following inputs from the river. The contents of mobile As and Hg correlated substantially with the contents of both metals that were extracted with 0.1 M HCl. In addition to the major pool in the residual fraction (65–87%), As was relatively abundant in Fe–Mn oxides/hydroxides, whereas Hg was abundant in the organic/sulfide fraction. The deposition and accumulation rates of As and Hg in the canyon clearly decreased as the depth of water increased. The depth distributions of both metals are likely controlled primarily by TOC and Fe–Mn oxides associated factors followed by a contribution from anthropogenic pollution. The metal pollution appears to have increased substantially around 1970, following the economic boom in Taiwan, suggesting that modern sediments in the Gaoping (Kaoping) Canyon were derived from the Gaoping (Kaoping) River (KPR).  相似文献   

8.
To gain a better understanding of the geochemical behavior of trace elements in estuary and to examine seasonal variations in associated chemical fluxes, more than 50 water samples were collected near the mouth of the Gaoping (formerly spelled Kaoping) River, a major river in southwestern Taiwan. These samples, collected in typical dry and wet tropical monsoon seasons during 1999–2004, were analyzed for dissolved major and trace elements and Sr isotopes. Our results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient and display significantly larger fluxes in the wet seasons. Vertical profiles of the major elements reveal mainly two end-member mixing between the riverine freshwater and the seawater. Trace elements of B, Sr and U also display conservative distribution in the vertical profiles. In contrast, dissolved Ba and Mn were affected by uptake/release processes involving groundwater, benthic flux and water/sediment interactions. 87Sr/86Sr ratios also support a scenario of mixing between a more radiogenic continental source and the seawater. It appears that the wet season samples have higher trace element concentrations due to inputs from topsoils and atmospheric dusts. This implies that chemical compositions in river waters respond sensitively to regional climatic changes. The observed high fluxes of B and Sr in the Gaoping (Kaoping) River emphasize the potential impact of mountainous rivers on the global oceanic mass balance of these constituents.  相似文献   

9.
This study aims at quantifying the distribution of REEs associated with chemical weathering processes, as well as investigating weathering mechanisms and source regions of the Gaoping (formerly spelled Kaoping) River (KPR) catchment basin located at southwestern Taiwan. Spatial distributions of dissolved rare earth elements, as well as major ions, trace elements and Sr isotopes in river waters were analyzed using SF-ICPMS and TIMS. Our results indicate that REE concentrations and patterns predominantly reflect sources and intensity of chemical weathering along the river's catchment. Most specimens have high Na/Cl (4.2–30.1 mol/mol) ratios due to strong weathering intensity in the upper stream. The Na/Ca and Mg/Ca ratios suggest the main contribution is from weathering of silicates and carbonates. Total concentrations of REEs are rather low in the Gaoping (Kaoping) River (6.7–15.4 ng/L), possibly influenced by adsorption onto suspended particles. The REE patterns also reflect source heterogeneity in weathering minerals with large LREE depletion and MREE enrichment. Europium is strongly enriched in the Gaoping (Kaoping) River water, as a result of its preferential dissolution from suspended particles. Unique Gadolinium anomaly is present in all specimens, likely related to contamination due to clinic waste disposal. Small fractionations of LREE/HREE have occurred along the KPR and can be used as a distinct signature for source identification. The main stream samples exhibit a relatively wide range of 87Sr/86Sr, 0.71265–0.71360, with a systematical increase downstream due to source mixing of dissolved basalt (less radiogenic) and sedimentary rocks. Each tributary shows distinct Sr isotope signatures due to different rock types and ages. These isotopic and elemental compositions provide important information on weathering source and erosion budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号