首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:针对列车过桥时简支箱梁桥所发生的结构振动问题,本文总结分析以往利用SIMPACK软件建立的仿真模型,并基于多体动力学与有限元法,提出一种轮轨耦合仿真实现方法,据此建立城市轨道交通车桥耦合振动分析模型,进而从时域和频域两个方面对列车过桥时箱梁结构振动特性进行分析,以期为城轨高架箱梁桥的减振设计提供参考。研究结论:(1)列车以40 km/h的速度过桥时,箱梁翼板的竖向振动最强烈,其次为腹板,且箱梁的竖向振动较之横向振动更为剧烈;(2)列车速度增加不仅会增大箱梁的变形,也会使箱梁受到更大的冲击能量;(3)列车低速过桥时,40 Hz以下的低频模态对箱梁局部振动贡献较大;高速过桥时,基频模态对箱梁局部振动贡献最大,且车速增加容易激发箱梁更高阶的模态,致使箱梁局部振动加强;(4)本文轮轨耦合方法不仅适用车桥间的耦合,也适用于车辆与大地或其他轨道结构间的耦合。  相似文献   

2.
针对城市轨道交通常规减振型轨道结构在低频域(30Hz)范围内因共振放大低频振动的现象,提出一种被动式动力减振轨道结构。基于扩展定点理论和有限单元法,利用最优同调和最优阻尼条件,得到抑制浮置板轨道1阶模态振动的最优刚度和阻尼。以短型钢弹簧浮置板轨道为例,建立车辆-被动式动力减振浮置板轨道耦合动力学模型。计算结果表明:被动式动力减振浮置板可有效抑制13 Hz(短型浮置板1阶固有频率)附近的振动加速度,质量比为0.2时被动式动力减振浮置板使13Hz处振动降低12dB;被动式动力减振浮置板使弹簧支点反力在13Hz附近的峰值明显降低,有效降低传递至周围建筑物的低频振动;被动式动力减振浮置板轨道结构的质量比越大,其对1阶模态振动的减振效果越好。  相似文献   

3.
随着轨道交通快速发展,其引起的振动噪声问题日益突出。为了研究高架轨道箱梁结构振动特性,基于车桥耦合动力学分析模型,利用多体动力学与有限元法求解箱梁结构的振动响应,并从时域和频域两个角度对轨道箱梁结构的振动特性进行分析,研究发现:(1)列车以80 km/h的速度过桥,车致振动自上而下在轨道结构间传递时,扣件全频段减振效果明显,CA砂浆层的减振效果不佳。(2)箱梁桥的翼板竖向振动响应水平最大,腹板次之,顶板和底板较小,在进行箱梁振动控制研究时应重点关注翼板和腹板的振动。(3)箱梁桥不同截面位置振动的模态贡献存在差异,跨中截面以1阶竖弯振动为主,2阶竖弯振型对1/4截面振动贡献最大,3阶竖弯振型对梁端截面的振动响应贡献最大。  相似文献   

4.
研究目的:针对常规浮置板轨道结构会放大低频振动的现象,基于发明问题解决理论(TRIZ)的思想和方法,利用发明原理、流分析等工具,提出低频减振轨道结构方案,并对部分方案进行数值仿真验证。研究结论:(1)利用空间分离原理,提出"分离式"轨道板结构,可克服"刚度既要低,又要大"这个物理矛盾;(2)利用流分析中"结合一个反流"的方法,提出"被动式动力减振"轨道结构,即在轨道板上弹性连接一个附加质量块,通过附加质量块相对于轨道板的反相位振动,可实现在常规浮置板轨道结构固有频率处施加一个反流的目的,从而消除常规浮置板轨道结构会放大低频振动的现象;(3)利用多体系统动力学和有限元技术,建立了车辆-被动式动力减振浮置板轨道结构耦合振动模型,计算结果表明:被动式动力减振浮置板轨道结构可以有效地抑制常规浮置板轨道结构在13 Hz(一阶模态)附近的低频振动,浮置板振动加速度由1.06 m/s~2减小到0.25 m/s~2,降低幅度达76%;(4)本研究结果可供低频减振轨道结构设计参考。  相似文献   

5.
为了研究MTMD(多重调谐质量阻尼器)对简支箱型梁低频振动的控制特性,首先通过对箱梁结构进行模态分析确定受控模态,利用经典扩展定点理论进行TMD(调谐质量阻尼器)的最优参数设计,并基于位移振幅最小化的原则,建立评价函数分别进行MTMD的最优参数设计;进而利用有限元分析软件ANSYS进行谐响应分析,研究了TMD的设置个数对减振效果的影响,并针对阻尼器的质量改变、刚度改变和阻尼改变进行了参数敏感性分析。研究结果显示:在附加质量相同的情况下,MTMD的制振效果随着设置阻尼器个数的增加而增强,但个数增至一定程度后,减振效果的提升不再明显;MTMD在质量、刚度参数发生偏移时的制振稳定性随TMD个数的增加而减弱,阻尼参数偏移时的制振稳定性随TMD个数的增加而增强。  相似文献   

6.
大跨度斜腿刚构曲线连续梁钢结构人行桥具有结构轻柔的特点,其基频一般处于人致振动敏感频率范围内,加之主梁采用钢结构材料,结构的阻尼也较低,在行人荷载作用下,桥梁有发生共振的风险.通过介绍行人荷载基本理论和德国人行桥设计指南EN03规范关于人致振动分析方法以及舒适度评价的规定,基于Midas Civil软件建立大桥的有限元仿真分析模型.研究结果表明:该桥有3阶主梁竖弯模态需要进行人致振动加速度响应验算,主梁侧弯模态的频率由于超出了横向人致振动敏感频率范围而不需要验算;在人群荷载作用下,主梁的竖向振动最大加速度达到4.349 m/s2;当在跨中设置调谐质量阻尼器(TMD)且质量比取为0.02时,主梁人致竖向振动的最大加速度可降为0.161 m/s2,满足CL1等级的舒适度要求.最后,讨论了质量比和TMD频率偏差对减振效果的影响,为同类人行桥调谐质量减振系统参数的选择提供参考.  相似文献   

7.
为提升钢弹簧浮置板轨道低频域制振性能,应用有限元方法建立地铁车辆-钢弹簧浮置板轨道耦合动力学模型,对带凸台的常规钢弹簧浮置板轨道进行结构改进设计。参考某地铁实际线路,基于TMD定点理论以及多自由度系统等价质量识别法,通过对无凸台钢弹簧浮置板轨道进行模态分析和谐响应分析,确定钢弹簧浮置板凸台下减振元件的最优刚度、最优阻尼;然后基于车辆-钢弹簧浮置板轨道耦合动力学模型,研究列车动荷载作用下钢弹簧浮置板轨道改进前后低频域制振效果。结果表明:改进后的钢弹簧浮置板轨道能够有效地抑制轨道板固有频率附近频段的低频振动;合理的TMD参数匹配能够有效地控制列车动荷载下钢弹簧浮置板基频范围内的低频振动及对应频段钢弹簧支反力向周围基础的传递。  相似文献   

8.
基于有限元方法与车辆—轨道耦合动力学理论,针对城市高架轨道交通引起的低频振动现象,着重分析了常用高架简支箱梁在铺设非减振型轨道、钢弹簧浮置板轨道和被动式动力减振浮置板轨道3种情况下的低频振动特性。结果表明:在0~30 Hz,非减振型轨道板因与梁体共同运动,其振动水平较钢弹簧浮置板略低,但非减振型轨道板无法有效衰减传递到桥梁结构的振动;在15~30 Hz,钢弹簧浮置板通过增大轨道板自身振动的方式降低板下结构的振动,墩顶的振动加速度级衰减量约10~20 d B,但会放大轨道在1阶固有频率(5 Hz左右)处的振动水平;插入控制1阶模态振动的被动式动力吸振器,可使浮置板及桥墩各测点在1阶固有频率处的振动大幅衰减,桥墩的振动加速度级衰减量约为10 d B,有效弥补了钢弹簧浮置板结构的不足。  相似文献   

9.
减振垫轨道是城市轨道交通高等减振措施中常用的一种轨道结构。为了研究减振垫轨道结构对车致环境振动的影响,首先对减振垫轨道的模态进行分析,其次建立了地铁列车-减振垫轨道-隧道-土体-建筑物系统模型。该系统模型分为两个子模型,将子模型1中的竖向轮轨力作为子模型2的外加激励,计算分析了轨道板、隧道壁、地面和楼层的车致振动加速度特性与振级特性。研究结果表明:由列车运营引起的振动在传递途径中,竖向振动加速度由轨道板到隧道壁的衰减量远大于由隧道壁到地面的衰减量,楼层和地面的竖向振动加速度水平基本相当;轨道板、隧道壁、地面和楼层的1/3倍频程加速度级两个峰值对应的中心频率31.5 Hz、80 Hz与轨道板第5阶、第10阶主振型的固有频率有关;减振垫轨道的中心频率介于3.15 Hz和8 Hz之间的减振效果较好;隧道埋深大于11 m,以及采用减振垫轨道结构的情况下,隧道正上方地面和楼层的Z振级最大值均小于70 dB,能够满足环评标准的要求。  相似文献   

10.
板式减振垫轨道能降低列车运营对周围环境的影响,确保城市轨道交通引起的振动满足环保要求,在高等减振设计中普遍采用。基于轮轨耦合作用,建立城轨列车-板式减振垫轨道-下部基础有限元模型,对不同减振垫刚度下板式轨道结构进行模态、谐振分析,并对其减振性能进行研究。研究表明:(1)减振垫轨道结构的固有频率随着减振垫刚度的增大而增大,振型包括轨道板的平动、转动、弯曲和钢轨的侧翻、扭转;(2)钢轨至轨道板的传递损失集中在15~30 d B,而轨道板至基底的传递损失峰值达51 d B;(3)车体加速度、轮轨垂向力、钢轨加速度、基底垂向加速度随着减振垫刚度的增大呈增大趋势,而钢轨位移、轨道板加速度和位移呈减小趋势;(4)板式减振垫轨道在25~100 Hz频段的减振效果较好,特别是1/3倍频程中心频率63 Hz处,插入损失达24 d B;在1~25 Hz频段的减振效果一般,而且局部频段出现振动放大的情况。  相似文献   

11.
应用ABAQUS软件建立列车—轨道—隧道—土层的动力学模型,研究钢弹簧浮置板的减振效果.在地铁列车以20 m·s-1速度运行条件下,浮置板的振动加速度峰值(15m·s-2)远大于普通轨道;铺设浮置板后隧道拱顶和地表的振动加速度峰值分别为0.07和0.005m· s-2,远小于普通轨道.频域分析表明:浮置板的振动频率在400Hz以上频段衰减很大,而100Hz以内低频成分的振动能量明显增强;浮置板轨道对于隧道拱顶在400~800Hz、地表在20~80 Hz频段内的减振效果明显.1/3倍频程分析表明:浮置板的分频振级最大增量为22 dB(中心频率为10 Hz);铺设浮置板后隧道拱顶的最大减振量为18 dB(中心频率1 016 Hz),地表的分频最大减振量为6 dB(中心频率63 Hz).Z振级分析表明:铺设浮置板后隧道拱顶和地表处的减振量分别为24和25 dB,在25~80 Hz频段的减振效果最好;因浮置板自振频率处于20 Hz以下的低频范围,能够吸收中高频振动、放大自身低频振动,所以具有阻高频、放低频的减振特性.  相似文献   

12.
跨度52 m的钢结构大跨度连廊是西安火车站改造工程的重要组成部分。建立有限元模型,对大跨度连廊进行结构模态分析和人致振动响应分析。结果表明,连廊结构第一阶竖向自振频率落在人正常活动的步频范围内,在正常人行荷载激励下可能引发共振且振动响应不满足人致振动舒适度的设计要求,须放置调谐质量阻尼器(Tuned Mass Damper,TMD)对1.3 Hz和2.6 Hz步频的人致振动进行减振控制。在连廊跨中区域放置TMD后,有效降低了结构的竖向自振加速度,舒适度满足设计要求。  相似文献   

13.
地铁列车引起的低频地表响应及减振措施研究   总被引:3,自引:0,他引:3  
翟辉  刘维宁 《都市快轨交通》2005,18(4):101--105
以北京某地铁标段减振措施研究为背景,研究地铁运营期间,列车振动荷载产生的低频地表响应的传播衰减规律及相应减振措施的效果,采用、Ansys软件进行有限元建模,利用改进的Newmark隐式时间积分法,针对5种减振工况,进行动力响应求解分析表明,与常规浮置板相比,新型的铜弹簧浮置板轨道结构对4Hz以上的低频振动在50m以内有明显减振效果.但50m以外效果不明显,且单纯加重浮置板重量对低频减振贡献不显著;同时辅助施作衬砌间的橡胶板垫层低频减振效果不明显.  相似文献   

14.
沪苏通长江大桥是目前世界上最大跨度的公铁两用斜拉桥,其超长超重斜拉索振动模态复杂,振动控制难度大。通过理论分析结合现场实测,得出了适用于大跨度斜拉桥超长斜拉索多模态振动控制方法及技术。研究表明:实测分析超长斜拉索施工期的振动具有多模态特征,既有中低阶振动(5~15阶),也有高阶振动(46~50阶);提出的外置式杠杆质量阻尼器ELMD和摆锤式MTMD阻尼器协同控制分析方法,理论分析结果满足斜拉索多模态控制要求,有效振动控制范围提升至60阶;研发的新型ELMD阻尼器通过杠杆放大和齿轮放大作用,为斜拉索提供附加阻尼和附加惯质作用,中低阶实测阻尼对数衰减率δ≥3%;研发的摆锤式MTMD阻尼器,采用摆锤式结构,利用质量调谐作用实现斜拉索高阶减振,现场无肉眼可见振动;通过长期健康监测系统显示,台风“烟花”过境期间监测到的最大振动加速度为0.012g,大桥正常运营期间,斜拉索的振动加速度基本被控制在0.01g以下。  相似文献   

15.
由于浮置板轨道减振效果较好,在地铁建设中使用比例大幅度增加。结合杭州地铁1号线钢弹簧浮置板和橡胶浮置板的测试结果,对比分析两种浮置板的自振特性、隧道内和地面减振效果。分析结果表明:受不同的轨道结构形式、不同的列车类型、运行速度、隧道结构等诸多因素影响,钢弹簧浮置板和橡胶浮置板轨道有不同的振动频率特性;钢弹簧浮置板竖向自振频率为7.90 Hz,橡胶浮置板竖向自振频率为14.87 Hz,钢弹簧浮置板和橡胶浮置板的高频减振效果高于低频的减振效果;橡胶浮置板对于高于25 Hz的振动有8~16 dB的减振效果;弹簧浮置板对于高于12.5 Hz的振动有8~22 dB的减振效果,钢弹簧浮置板轨道对于控制列车运行产生的环境振动更有效。  相似文献   

16.
研究目的:高速铁路高架桥结构噪声的根源是桥梁在列车荷载作用下产生的频率在20~200 Hz之间的局部振动,而结构噪声经研究从传播途径上控制效果较差,应选用较为精细的方法从其产生根源上着手加以研究。研究结论:基于车辆一轨道耦合动力学原理,利用有限元方法针对高速铁路中所采用的典型箱梁的局部振动问题作了详细的分析求解,选取了具有代表性的6个敏感点,分析了多种工况下的点振动响应,结果表明:(1)工程实际中在满足其他受力条件的前提下,通过改变箱梁顶板的厚度、腹板的厚度都会对控制箱梁局部振动起到可观的效果;(2)由改变腹板倾角分析可知,较小的倾角对结构局部振动具有一定的控制作用,但并不意味着一定要将其设置为0°来控制局部振动,需综合考虑其他因素,取最合适的腹板倾角;(3)该研究结果对高速铁路桥梁工程减振降噪设计具有指导意义。  相似文献   

17.
为了研究地铁道岔区段道床板振动特性,并且为减振降噪设计提供理论参考,以地铁道岔区段为研究对象,以实测轨道不平顺数据为基准,建立道岔区段仿真模型,进行计算。通过时域、频域及模态分析,得出不同工况(速度)下道岔区段道床板振动响应。结果表明:相同速度下,道床板尖轨位置的垂向振动响应要大于心轨位置,并且其垂向振动加速度峰值是心轨位置的近2倍左右。随着列车通过速度的提高,无论尖轨还是心轨位置,道床板的振动响应都会逐渐增强。道床板尖轨位置垂向振动对应的主频为4,80 Hz及140 Hz,在80 Hz,道床板产生低频垂向振动最大。而道床板心轨位置垂向振动对应的主频为5,75 Hz及145 Hz,并且在75 Hz处,道床板产生低频垂向振动最大。模态分析时,发现对道床板尖轨和心轨位置振动影响最大的是各阶连续弯曲和混合扭弯模态。  相似文献   

18.
列车移动轴荷载作用下的地面振动及隔振研究   总被引:1,自引:0,他引:1  
基于动力学理论和三维有限单元分析方法,建立列车移动轴荷载作用下的三维地面振动数值分析模型。以3辆编组的列车为例,考虑列车速度的影响,分析了振动在大地中的传播特性和隔振沟的减振效果。结果表明,列车移动轴荷载引起的竖向地面振动比横向振动大,隔振沟能对竖向地面振动起到较好的减振效果。  相似文献   

19.
为了研究减振层刚度变化对减振型CRTSⅢ型板式无砟轨道振动的影响,本文根据车辆与路基上减振型CRTSⅢ板式无砟轨道结构相互作用的特点,基于有限元理论,提出了一种轨道单元和车辆单元,建立了列车-减振型CRTSⅢ板式无砟轨道耦合动力学时域分析模型,分析了减振层刚度变化对车体、钢轨、轨道板和底座板振动响应的影响。研究结果表明:(1)减振层刚度的变化对车体的振动影响较小,对钢轨、轨道板和底座板的振动影响较大;(2)随着减振层刚度的增大,削弱了板式轨道的弹性,减振层以上结构的振动不断减弱,下部结构的振动不断加剧;(3)同时考虑减振层上部和下部结构的动力效应,建议减振层刚度应在400~700 kN/mm。  相似文献   

20.
以高速铁路32 m混凝土简支箱型桥梁为研究对象,通过有限元软件建立了轨道-桥梁分析模型,采用车辆-轨道-桥梁耦合振动理论,分析了桥梁结构的竖向振动,并将得到的竖向振动响应作为边界条件,导入到箱梁边界元模型中预测箱梁结构噪声。同时基于面板声学贡献分析理论,进行了箱梁梁体的面板声压贡献分析和声功率贡献分析,确定箱梁梁体辐射噪声的最大部位。研究结果表明:列车以200 km/h的速度运行在高架轨道上时,箱梁梁体辐射噪声主要集中0-100 Hz范围内,其中在20 Hz和42 Hz左右有比较突出峰值。同时由面板声学贡献分析可知箱梁梁体主要辐射噪声的部位是箱梁的顶板和两侧翼缘板下面板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号