首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
根据桥址处地形、地貌、线路条件等要求,福厦客专乌龙江特大桥孔跨布置为(72+109+432+56+56)m,该桥中跨主梁采用钢箱梁,边跨部分区域主梁采用预应力混凝土箱梁,是国内外最大跨度四线铁路高低塔混合梁斜拉桥。主梁采用双主梁+密横梁体系,钢混结合段采用梯形填充混凝土前、后承压板式钢-砼接头构造。采用有限元分析方法,对结构刚度变形以及主梁的受力开展研究,计算结果表明,该桥主梁强度、刚度及抗风稳定性均满足规范要求,具有良好的静、动力特性。该桥型结构优美经济,可为今后桥梁设计提供借鉴和思路。  相似文献   

2.
广湛铁路东平水道主桥采用(67.5+60+60+350+60+60+67.5) m双塔双索面混合组合梁斜拉桥,半漂浮结构体系。主梁采用混合主梁;桥塔采用带弧A形桥塔,塔高分别为149,147 m;全桥共布置144根斜拉索,斜拉索采用锌铝合金涂层平行钢丝拉索。东平水道主桥受力合理,提升了钢-混凝土混合梁斜拉桥在高铁无砟轨道桥梁中的适用跨度。边跨采用混凝土梁提高结构刚度改善梁端转角;中跨采用开口钢箱梁及预制桥面板的结合梁,节省用钢量,且结构刚度较大。对该桥抗风、风-车-桥系统空间耦合振动、无砟轨道适应性、抗震性能进行研究,结果表明,各项性能均满足规范要求,能够满足高速铁路无砟轨道对结构安全性和行车舒适性的要求。提出复杂建设条件下高速铁路无砟轨道混合结合梁斜拉桥的施工工法,能有效提高施工质量、缩短建设工期。  相似文献   

3.
朝阳大桥主桥总体设计   总被引:1,自引:1,他引:0  
朝阳大桥主桥总长1 208 m,对该桥设计采用的多项新材料、新工艺、新技术及其主要工程特点和关键技术进行总结。针对并利用赣江水域宽阔,需涵盖实测航迹线与规划主航道,桥垮布置为79 m+5×150 m+79 m六塔单索面斜拉桥。主梁采用波形钢腹板-PC组合梁;桥塔采用“合”造型;索距采用6.5 m,从建筑造型、材料用量和受力性能等方面最佳。为保证全桥结构性能最优,结构支承体系采用塔梁固结、梁墩分离形式,边跨与中跨跨径比值为0.53。  相似文献   

4.
以蒙华重载铁路主跨248 m部分斜拉桥为例,采用有限元分析理论,分析在该跨度范围内部分斜拉桥应用于重载铁路的适应性及特殊性。对该桥结构体系、主梁梁高、预应力次内力、桥塔刚度、桥塔高度及索塔梁刚度匹配等结构参数进行比选研究,确定合理布置形式。结果表明:(1)该重载铁路部分斜拉桥采用塔梁固结、墩梁分离体系,主墩支座采用双1 90 000 kN超大吨位球形钢支座;(2)主梁中支点—跨中梁高采用13 m-6 m组合为优;(3)短预应力钢束时弯矩近似矩形分布于预应力钢束布置区域,次内力较小;长预应力钢束次内力弯矩近似呈三角形分布,次内力影响明显;(4)桥塔尺寸主要由索鞍等构造及桥塔本身受力控制,其刚度对结构整体受力及刚度影响均较小;(5)为提高跨中截面等控制性区域结构受力性能,桥塔采用高塔型体系,高跨比1/4.35;(6)结构整体刚度主要由主梁提供约占67%,主塔及拉索对整体刚度贡献值为33%,主塔及拉索对刚度影响因素主要为桥塔高度。  相似文献   

5.
随着轨道交通建设区域的不断延伸,大跨度桥梁越来越多地应用于轨道交通领域。由于矮塔斜拉桥属于高次超静定复杂结构,刚度、温度耦合效应明显,控制设计参数多,同时轨道交通桥梁的荷载、刚度、变形等指标与公路桥梁有所不同。针对南京市宁句城际轨道交通大跨度矮塔斜拉桥,通过对各关键参数的比选分析,得出该桥的主要结构参数对结构力学性能的影响规律。研究结果表明:矮塔斜拉桥的受力性能受主梁刚度影响较大,而受桥塔的刚度影响较小,增大桥塔高度、拉索间距和塔根无索区长度将改善结构的受力性能。  相似文献   

6.
张欣欣  徐俊 《铁道勘察》2023,(3):109-115
为了研究不对称混合梁斜拉桥在高速铁路上的适应性,以阜淮高铁颍河特大桥为例,结合控制因素开展方案设计和结构设计。受通航、防洪及线路纵断面条件限制,主桥采用(31+73+230+114+40) m高低塔混合梁斜拉桥方案,主跨、大里程边跨分别跨越主、副通航孔,孔跨布置与航道要求相适应,梁高满足线路高程和净空要求。主桥采用半漂浮体系,在高塔侧设置纵向固定支座,双塔纵向设置黏滞阻尼器。通航孔上方主梁采用钢混结合梁,其余跨主梁采用混凝土梁,桥塔采用H形花瓶塔,斜拉索采用扇形布置。建立静动力模型,对该桥进行静力、稳定性、抗震、抗风、风车桥耦合计算分析,研究结果表明:主桥结构受力合理,静动力各项指标均满足规范要求,结构安全可靠,主梁刚度较大,满足无砟轨道铺设要求。  相似文献   

7.
以赣江二桥为研究对象,通过有限元程序ANSYS 15.0建立该桥的三维实体有限元模型,对大桥的静、动力特性进行了分析。结果表明:在正常使用状态内力组合和承载能力极限状态内力组合两种荷载工况下,钢-混凝土叠合梁跨中位移以及主塔位移均较小,主梁未出现拉应力,主梁及主塔应力有足够安全储备,均满足规范要求。该桥的一阶自振周期为4.215 8 s,相比一般大跨斜拉桥较小,而主梁竖弯、扭曲较早出现,说明钢-混凝土叠合梁斜拉桥具有整体刚度高,对地震、风荷载等动力作用较为敏感的特点。  相似文献   

8.
结合高速铁路主跨332 m高低塔混合梁斜拉桥的设计方案,建立空间有限元模型,针对高低塔混合梁斜拉桥的结构特点和适用条件,对结构体系、主梁形式、主梁高度、主塔高度、斜拉索索距、合理边中跨比、辅助墩的设置等进行了研究,并分析不同的设计方案对高低塔混合梁斜拉桥力学行为的影响,从而确定最优方案。研究结果表明:主桥孔跨布置采用(51+135+332+62+51)m合理可行,采用纵向固定约束体系时固定支座宜设置左低塔处,主梁高度为45 m;高低塔宜采用尾索角度29°,30°对应的塔高。  相似文献   

9.
徐盐高铁盐城特大桥为全线控制性工程,主桥横跨新洋港,采用跨度布置为(72+96+312+96+72) m的双塔双索面连续钢桁梁斜拉桥,半漂浮体系、塔梁之间设置阻尼器及速度锁定装置。主梁采用2片主桁,三角形桁式,桥面为正交异性板整体钢桥面,道砟槽范围内采用热轧不锈钢复合钢板。桥塔为H形花瓶式混凝土塔,塔座以上全高123 m,交接墩和辅助墩采用拱形双柱式门式墩。全桥共设置48对环氧平行钢丝斜拉索,平行索面,呈扇形布置,在塔端采用齿块锚固,在梁端采用锚拉板锚固。考虑施工期间台风影响周期较长且强度较大,利用桥址特点,边跨钢梁采用支架法架设,主跨钢梁利用桥面架梁吊机单向悬拼架设,并配合有效的抗风措施,大幅提高了施工过程中的结构抗风稳定性。  相似文献   

10.
通过建立有限元模型对波纹钢腹板矮塔斜拉桥以及钢筋混凝土梁矮塔斜拉桥进行了静动力性能分析,对比了两者在移动荷载作用下主梁内力、主梁挠度、主塔内力、拉索内力以及结构自振特性的区别。研究结果表明:矮塔斜拉桥结构整体受力性能接近于连续梁;将钢筋混凝土梁替换成波纹钢腹板后,矮塔斜拉桥主梁刚度降低,主梁承担的荷载效应减少,此部分荷载效应通过拉索传递到主塔结构上,因此整体结构受力特点由主梁依赖型向主梁拉索协同型转变。  相似文献   

11.
研究目的:三塔双主跨斜拉桥相较常规大跨斜拉桥而言,具有一定的经济优势,但也存在竖向刚度低、拉索疲劳应力幅高等缺点,目前在铁路上尚未得到广泛应用。本文以广佛江珠城际(72+96+336+336+96+72) m三塔斜拉桥为背景,对影响刚度的结构参数进行分析,进而拟出合理结构尺寸,并对结构进行力学计算,得出在城际铁路中推广三塔斜拉桥的可行性。研究结论:(1)竖向刚度随主梁高度增加而增大,但增幅低于梁高增幅,主梁采用钢箱梁时,通过增加主梁梁高来提高竖向刚度会较不经济,综合考虑后梁高取4.5 m;(2)索塔高度取96 m,塔柱截面取7 m×4 m;(3)斜拉索采用双索面扇形空间布置,索塔锚固间距2 m,斜拉索在主梁上锚固间距为8 m,斜拉索与主梁夹角为30.3°~78.3°;(4)辅助墩位置选择距离主塔96 m;(5)三塔斜拉桥在城际铁路荷载作用下受力良好,具备推广的价值。  相似文献   

12.
以赣江公铁两用大桥西支主桥设计为例,研究一种适应上层8车道公路、下层对称双线铁路+4车道公路混合布置的主梁断面形式。提出带挑臂双索面箱桁组合断面、带挑臂单索面箱桁组合断面、矩形箱桁组合断面、矩形钢桁梁断面4种主梁断面方案,采用有限元软件分析各方案静动力性能及受力特点,综合考虑方案构造特点、技术指标、工程数量、公铁运营安全、景观效果等,确定该桥选用带挑臂双索面箱桁组合断面。该桥斜拉索最大索力16 000 kN,锚固在下层钢箱梁两侧,通过有限元实体分析对锚拉板和钢锚箱式两种索梁锚固形式进行比选研究,钢锚箱形式受力合理、应力水平低、经济性好,设计采用钢锚箱形式。带挑臂双索面箱桁组合断面桥面空间布置合理、下层公铁行车干扰小、梁端竖向变形最小、经济性好,是一种适应公铁混合布置大跨度斜拉桥主梁断面形式。  相似文献   

13.
为了深入研究大跨度公轨两用悬索桥的动力特性,以贵州省在建的马岭河三号特大桥为研究对象,基于Midas/Civil建立全桥三维离散单元有限元模型,采用子空间迭代法进行模态分析,得到该桥的自振频率和振型,并采用控制变量法,分析主塔刚度、主缆刚度、加劲梁刚度、吊杆刚度、恒载集度、中央扣和横向抗风支座等六类结构关键参数对其动力特性的影响。研究结果表明:该桥基频为0.172 Hz,对应振型为主梁1阶正对称侧弯,该桥自振频率较同等跨径的普通公路悬索桥高,结构整体刚度较大;增大主塔刚度,主塔侧向振动频率提高;增大主缆刚度,主梁1阶竖向振动和扭转频率提高;增大吊杆刚度,纵飘频率有一定程度提高;增大加劲梁刚度,主梁侧弯和主梁扭转振型频率的提高显著,有助于提高结构的横向刚度和改善结构的颤振性能;而增大恒载集度,以主梁振动为主的侧弯、竖弯、扭转振型的自振频率均有不同程度的降低;中央扣和抗风支座能有效提高结构的整体刚度。  相似文献   

14.
为研究高速铁路多塔斜拉桥力学行为,以某高铁黄河桥为背景,对主跨5×260m六塔斜拉桥进行结构参数及受力特性研究.结果表明:5主跨斜拉桥主梁竖向刚度约为单主跨斜拉桥的0.5倍;能显著控制塔顶水平位移的措施可有效改善主桥总体刚度,如采用刚性塔、加劲索;温度、收缩徐变引起长联主梁伸缩,对边塔形成"拖拽"效应,桥塔两侧索力变化...  相似文献   

15.
研究目的:津保铁路子牙河特大桥主桥采用(32.7+56+84)m矮塔斜拉桥结构体系,横向为单箱四室箱形截面。本桥桥面宽达23 m,为我国铁路矮塔斜拉桥之最,必须对其横向受力进行分析。研究结论:通过对横向框架的受力分析,确定了本桥横向预应力钢束的形状和数量。由于温度荷载的影响,本桥钢束采用小角度弯起的钢束形状。裸梁阶段,在日照荷载作用下,顶板下缘出现部分拉应力,施工过程中需采取措施避免日照荷载直接作用。本文单箱多室箱形截面的横向受力分析过程,可为铁路桥梁单箱多室结构横向分析计算提供一种合理的设计思路。  相似文献   

16.
矮塔斜拉桥是近年来兴起的一种新颖的桥梁结构形式,他兼有连续梁(连续刚构)桥和传统斜拉桥的受力特征,其在100~300m跨径的桥梁中具有良好的优势。以云南省绥江县四方桥为工程背景进行了矮塔斜拉桥的活载效应特征参数分析。运用MIDAS/CIVIL软件对四方桥建立了空间梁单元模型,分别探讨了塔高,拉索截面积、主梁抗弯刚度对矮塔斜拉桥活载效应的影响,综合各参数的影响后采用特征参数来得出对矮塔斜拉桥作用效果的综合影响,求得了四方桥的索梁活载比,同时和来作为界定矮塔斜拉桥和斜拉桥的一个标准。  相似文献   

17.
以郑万客运专线联络线铁路预应力混凝土独塔斜拉桥为工程背景,其跨径布置为(32+138+138+32)m,结合支架现浇转体施工方法,对郑万铁路斜拉桥的施工及设计关键技术进行研究。建立斜拉桥的空间有限元模型,充分考虑结构非线性效应,通过理论分析的方法对高铁独塔斜拉桥构造及力学行为开展研究。重点进行主桥静力分析、稳定性分析、索塔锚固区域细部优化分析及结构动力分析。研究结果表明:支架现浇转体施工方法可以有效减小对既有线路的影响。该桥在施工及成桥阶段,结构受力及变形合理,稳定系数大,各项指标均满足规范要求,且具有较大富裕量。对于大跨铁路斜拉桥,索塔局部受力复杂,需进行局部受力分析,优化细部设计。该桥结构具有刚度大、整体性好的特点,且动力性能较好,有较高的行车舒适性。  相似文献   

18.
某双柱型独塔斜拉桥动力特性分析   总被引:1,自引:0,他引:1  
利用大型有限元程序ANASYS对中山市板芙二桥主桥(双柱型独塔斜拉桥)建立全桥的整体动力分析模型,针对主梁为开口截面的双索面斜拉桥,采用壳单元模拟主梁,考虑塔柱横梁和辅助墩的影响,分四种工况(实桥模型;实桥上增设塔柱横梁模型;实桥上增设辅助墩模型;实桥上设辅助墩和塔柱横梁)计算了该桥的动力特性,计算结果表明:双柱形桥塔降低了主梁的扭转刚度,尤其是当主梁采用开口截面时,塔柱侧向弯曲振动与主梁的扭转强烈地耦合在一起。  相似文献   

19.
新建广州南沙港铁路西江特大桥跨西江主桥为(2×57.5+172.5+600+4×57.5)m混合梁斜拉桥,主跨600 m跨越西江。钢-混结合段是钢箱梁与混凝土箱梁的连接点,也是混合梁斜拉桥的施工关键控制点。其施工质量直接关系到全桥的刚度、过渡段平顺性及应力传递的可靠性。为确保西江特大桥钢-混结合段混凝土浇筑工艺的可靠性并有效保证钢-混结合段混凝土施工质量,在实体工程施工前现场进行了1:1的模型试验,重点对试验模型的结构设计和制作、混凝土配合比的设计与优化、混凝土的浇筑工艺以及试验结果分析等进行了阐述,进一步完善了钢-混结合段混凝土浇筑工艺试验的做法,为将来类似斜拉桥钢-混结合段施工工艺提供了经验借鉴。  相似文献   

20.
阜淮高铁跨越颍河节点受航道等级、通航孔布置及线路纵断面条件限制,主桥需采用主跨230 m、边跨114 m的不等跨低高度桥梁结构。为选择合理的桥梁方案,分别对高低塔斜拉桥、独塔斜拉桥、连续钢桁梁柔性拱桥3个方案,从桥梁结构选型、力学及变形指标、施工及工程投资等方面进行综合比选;并对高低塔斜拉桥钢混结合段位置进行了比选和参数分析。研究结果表明:推荐采用(31+73+230+114+40) m高低塔混合梁斜拉桥方案,能很好地满足主副通航孔设置和低梁高要求,具有较大的结构刚度,对无砟轨道适应性好,且经济性较优;针对不等边跨各自受力特征,推荐不对称设置结合段位置,230 m和114 m跨采用结合梁,其余采用混凝土梁,结构经济合理;结合段远离主塔或辅助墩,结合段内力减小,但主梁内力增大,结合段变形增大;通过分析合理选择结合段位置,使结合段和主梁受力合理、静活载响应小、施工便利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号